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Abstract

This expository essay is aimed at introducing a variety of topics (in particular,
Linear Analysis and Mathematical Logic & the Foundations of Mathematics), where
some are connected, and others stand on their own. All discussed topics will however
increase our understanding of the foundations of mathematics and analysis. The
presentation is based on a lot of different sources of material (check references). A
background in Real & Complex Analysis and Linear Algebra is essential, and while
Topological and Metric Spaces is not essential, it would be useful.

Preface

This essay contains some easy exercises that the reader is recommended to attempt, to
stay engaged in the material. But, mainly to keep the essay shorter, otherwise it would
turn into a book.
In Chapters §2, §3, & §4, to lighten up the mood and let the reader enjoy the material,
we will include many Latin phrases which will be italicised for a clear indication of such,
and will usually be translated to English at first. A list of the Latin phrases used is in the
Appendix C.
The chapters are ordered by Arabic numerals while the sections and subsections are ordered
by Roman numerals. This is so the results do not get confused with the sections. So, 2.I
is a section, while 4.13 is a result.
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1. INTRODUCTION 3

1 Introduction

The aims of this essay are two-fold. The first is to give a solid introduction toMathematical
Logic & Set Theory, in particular First-Order Logic and the Zermelo-Fraenkel Axioms with
the Axiom of Choice (ZFC). Here, we will see constructions of the number systems in a
purely set-theoretic way; namely, the natural numbers, the integers, the rationals, and the
real numbers. This gives us a good base to discuss concepts of Analysis. The second aim
is to give an introduction to Linear Analysis. These two topics should prepare the reader
to study more advanced topics, such as Model Theory and Operator Algebras.

David Hilbert’s goal was to find a formal language for all of mathematics. This is possible
with the ZFC axiomatic system of set theory, which we will look into in Chapter §3.

Axiomatic set theory provides a conceptual foundation in mathematics. This allows us
to be as rigorous as possible at defining things: to have a complete understanding of the
foundations of mathematics. So we will get a brief understanding of how all of mathematics
can, essentially, be formalised in terms of sets.

We do not assume any background in formal logic.

Outline

The aims of Chapters §2 and §3 is to understand the importance of set theory, and see how
all the important number systems, namely N,Z,Q,R and C, can be constructed purely
from sets (with respect to the axioms). The rough outline is as follows. Chapter §2 gives
us an introduction into first-order logic. We will first see propositional logic, which is just
the study of combining logical statements, and predicate logic, which is an extension of
propositional logic with the use of variables and quantifiers. In the end, we will see some
formal proof systems, including natural deduction systems. Chapter §3 is on the ZFC
set theory. After introducing the axioms, we will show how the natural numbers can be
naturally (in the sense of the axioms) constructed from the empty set. From this, we can
construct integers, and hence the rationals. The construction of the real numbers is given
by Cauchy sequences, and so will be a nice application to the completion of normed vector
spaces found in Chapter §5. This concludes the first part of the essay, namely, Logic &
the Foundations of Mathematics.

The first part sets the scene for the next chapters (§5 – §8.I), i.e., Functional (Linear)
Analysis, which is essentially calculus (analysis) on vector spaces. In this part, we will
explore results from a first course on functional (linear) analysis. In Chapter §5, we
will will introduce normed vector spaces (which will consequentially include results from
topological and metric spaces). In Chapter §6, we will explore results from the spaces
of continuous linear maps. We will then introduce Hilbert spaces in Chapter §7. And,
finally, to conclude this part of study, we will see Banach algebras and spectral theory in
Chapter §8. To conclude this part of the essay, we will see some results on C∗-algebras in
Chapter §8.I.

2 First-Order Logic

To precisely state the axioms of set theory, we need a formal language: the language of
first-order logic. This is to avoid any ambiguity that arises in natural languages. We will
not go deep into formal logic and proof theory. The interested reader is directed to [2],
[6], [17], [23], and [29].
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This chapter is based on the presentations given in [2], [5], [6], [17], [23], [29], and [31].

Logic, primarily, first-order logic, is essentially the study of arguments, and is the language
of set theory (along with the set membership relation ∈).

2.I Propositional logic

Propositional logic, sometimes called propositional calculus, is the study of logical state-
ments with logical connectives (defined below). So, we can think of this as a way to
describe combining statements and sentences.

Definition 2.1. A proposition p is a variable (i.e., a statement or formal expression)
that has a truth value, i.e., true (in latin: verum) denoted as ⊤ or T, or false (in latin:
falsum) denoted as ⊥ or F.

Remark. It is important to note that, as logicians and mathematicians, it is our respon-
sibility to ensure the validity of the arguments, but not our responsibility to ensure the
truth of the premises. For instance, the sentence,

If all humans can fly, and I am a human. Therefore, I can fly.

is logically valid. However, the premise that all humans can fly is obviously not true.

A formal language consists of an alphabet (i.e., a collection of symbols), syntax (i.e., what
is in the language and how we can form formulas), and semantics (i.e., the interpretations
of formulas). We will denote the language of propositional logic as LProp.

In order to discuss the syntax and semantics of our language we need a metalanguage,
i.e., a language that describes the objects in our language. For propositional logic and
predicate logic, we will use English as our metalanguage.

The alphabet of propositional logic consists of the following symbols,

· propositional variables a, b, . . .

· the unary operator : negation, ¬
· the binary connectives (operators) ⇒,∧,∨,⇔, which stand for implication, conjunc-
tion, disjunction, and equivalence, respectively

· punctuation marks : the left and right parentheses, ( and ), commas ,, and periods .

· nullary constants : ⊤ and ⊥
To remove any ambiguity, the alphabet of the language consists of propositional variables
and the following symbols,

¬ ⇒ ∧ ∨ ⇔ ⊤ ⊥ ( ) , .

The syntax of propositional logic is defined by one of the following,

(i) every propositional variable is a formula

(ii) ⊥ and ⊤ are formulas

(iii) if A and B are formulas, then so are all ¬A, (A ⇒ B), (A ∧ B), (A ∨ B), and
(A⇔ B).

The binding strength of the logical operators are as follows:

¬,∧,∨,⇒,⇔
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Also note that the connectives are read from right to left (see below example).

Example 2.2. We can build new propositions (formulas) using logical operators.
Let p, q and r all be propositions.

So then p and q are also formulas. So are ¬p and (p⇒ q). And so is (((p⇒ q)∧(¬p)).
And so on . . . .

Because of the binding strength of the connectives, we can omit the brackets to make
reading the proposition easier. For instance (((p ⇒ q) ∧ (¬p)) can be rewritten as
(p⇒ q) ∧ ¬p.
However, if we were given the following formula p⇒ q ∨ r ⇒ p, then it is an abbrevi-
ation of p⇒ (q∨ r) ⇒ p, since ∨ binds stronger than ⇒. And this is an abbreviation
of p⇒ ((q ∨ r) ⇒ p) since the connectives are read from right to left.

So the above example shows that we can ignore the parentheses, if the formula does not
become ambiguous.

Now to talk about the semantics of propositional logic, we need to define what the logical
operators really “mean.” We do this with truth tables , i.e., we list out all the possible
truth values of each propositional variable in a propositional formula. So we define a
valuation (or truth assignment) on the language LProp that assigns a truth value of T
(verum) or F (falsum) to the propositional variable. A valuation is uniquely determined
by their propositional variables. For example, given propositions p and q, if the valuation
of p is T and the valuation of q is F, then the valuation of p ∨ q is T. We can write [[p]]
for the valuation of p. Considering the truth tables below, each row shows the valuation
of each propositional variable and the valuation of the formula under each connective.

Remark. The implication operator is defined in a way that represents the Latin phrase:
ex falso sequitur quodlibet , i.e., “from falsehood, anything follows.” This means that, for
any valuation in our language, the valuation of the formula p implies q is always verum
whenever the valuation of p is falsum. De facto, the truth value of an implication, say
p ⇒ q, is falsum if and only if p (called the antecedent) is verum and q (called the
consequent) is falsum, otherwise it is verum.

The truth table of the binary operators is as follows.

p q p ∧ q p ∨ q p⇒ q p⇔ q
T T T T T T
T F F T F F
F T F T T F
F F F F T T

The truth table of the unary operators and the constants is as follows.

p ¬p ⊤ ⊥
T F T F
F T T F

A tautology t is a proposition which is always verum (i.e., has a true value for all val-
uations), denoted as � t. You can usually show that that a proposition is a tautology
by showing the truth table. We say that the proposition is valid if it is a tautology. A
contradiction is a proposition which is always falsum.

Given propositions p, q. We say q is a logical consequence of p, and write it as p � q, if for
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any valuation we have that if p is verum then q is verum.

Proposition 2.3. Given propositions p and q. We have p � q if and only if � (p⇒ q).

Proof.

(⇒) Suppose p � q. Then for any valuation, we have that if p is verum then q is verum.
So then the valuation of (p⇒ q) is also verum. Now if we have that if the valuation
of p is falsum, then ex falso sequitur quodlibet , so the valuation of (p⇒ q) is verum.
And so we have the following truth table

p q p⇒ q
T T T
F T

So, � (p⇒ q).

(⇐) Now suppose � (p ⇒ q), so for any valuation, we have (p ⇒ q) is verum. So if the
valuation of p is verum, then the valuation of q is also verum by the definition of
the implication operator. So p � q.

So, then we can show q is a logical consequence of p by showing p⇒ q is a tautology.

Now two propositions p and q are said to be logically equivalent if (p � q) and (q � p),
written as p � �q, i.e., for every valuation, the valuation of p if and only if the valuation
of q (in other words, has the same truth value for all valuations).

Proposition 2.4. The proposition p is logically equivalent to the proposition q if and only
if � (p⇔ q).

Proof.

(⇒) Suppose p and q are logically equivalent. Then for any valuation we have that the
truth value of p is the same as the truth value of q, and so we get the truth table,

p q p⇔ q
T T T
F F T

So, � (p⇔ q).

(⇐) Now suppose � (p ⇔ q). Then for any valuation, we have that the valuation of p if
and only if the valuation of q since the valuation of (p ⇔ q) is verum. So, we have
p and q are logically equivalent.

So to show that propositions p and q are logically equivalent, we can just show p if and
only if q is a tautology.

Remark. We could have used Proposition 2.3 to show the above. It follows that given
propositions p and q, the proposition p⇔ q is equivalent to (p⇒ q) ∧ (q ⇒ p).

Now, sometimes, in order to prove a statement, we will need to prove the contrapositive
statement, i.e., p⇒ q is logically equivalent to ¬q ⇒ ¬p (our next result).
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Proposition 2.5. Given propositions p and q. We have � (p ⇒ q) ⇔ (¬q ⇒ ¬p), in
other words, p⇒ q is logically equivalent to ¬q ⇒ ¬p.

Proof. We show this with the following truth table. We see that the columns for p implies
q is the same as its contrapositive statement.

p q ¬p ¬q p⇒ q ¬q ⇒ ¬p
T T F F T T
T F F T F F
F T T F T T
F F T T T T

We can also add another column to the table, namely, (p⇒ q) ⇔ (¬q ⇒ ¬p), and we can
easily see that it is a tautology, and so the result follows.

Proposition 2.6. We can define the connectives ¬,∨,∧ with only ⇒ and ⊥. In particular,
for propositions p and q,

(i) ¬p � �(p⇒ ⊥),

(ii) (p ∧ q) � �¬(p⇒ ¬q),
(iii) (p ∨ q) � �(¬p⇒ q).

Proof.

p q ¬p p⇒ ⊥ p ∧ q ¬q p⇒ (¬q) ¬(p⇒ (¬q)) p ∨ q (¬p) ⇒ q
T T F F T F F T T T
T F F F F T T F T T
F T T T F F T F T T
F F T T F T T F F F

From the above result, we can see that we can restrict our definition of the alphabet of
LProp to consist of ⊥ and ⇒ instead of ¬,⇔,∧ and ∨.
The following is left as an exercise.

Proposition 2.7. Given propositions p and q. We have

(i) ¬(p ∨ q) � �(¬p ∧ ¬q)
(ii) ¬(¬p) � �p

(iii) ((p⇒ q) ∨ (q ⇒ r)) � �(p ∨ ¬p)
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2.II Predicate logic (first-order logic)

Predicate logic, also known as predicate calculus or first-order logic, is an extension of
propositional logic such that it includes variables and quantified variables.

The alphabet of the language of predicate logic LPred consists of variable symbols x, y, . . .,
predicate (relation) symbols P,Q, . . . , p, q, . . ., the binary relation equals =, the connectives
¬ ∧ ∨ ⇒, the constants⊤ ⊥, punctuation marks ( ) , . :, and the universal and existential
quantifiers ∀ and ∃.
Essentially, a predicate is a statement with variables and has its truth value dependent on
its variables.

Given a formula ϕ. We define the universal quantifier ∀ which stands for “for all.” For
example, ∀x : ϕ is read as, “for all x (in the universe of discourse) such that ϕ is true.”
We also define the existential quantifier ∃ which stands for “there exists.” For example,
∃x : ϕ is read as, “there exists an x (in the universe of discourse) such that ϕ is true.”

The syntax of this language is defined by the following

(i) any variable is a term

(ii) for any predicate P , and variables x, y, . . ., we have P (x, y, . . .) is also a term

(iii) for any terms a, b, . . . and predicate P , we have P (a, b, . . .) is a formula

(iv) for terms p, q, p = q is a formula

(v) if ϕ and φ are formulas, then so are (¬ϕ), (ϕ⇒ φ), (ϕ ∧ φ), (ϕ ∨ φ)
(vi) if ϕ is a formula and x is a variable, then ∀x : ϕ and ∃x : ϕ are formulas

(vii) ⊤ and ⊥ are formulas

We say that a variable in a formula is bound if it in the scope of a quantifier. If the variable
is not bound, then it is free.

The binding strength of the operators are now

¬, ∀x, ∃x,∧,∨,⇒

Substitution in predicate logic means replacing every occurrence of a variable in a formula
by a term, i.e., for a formula ϕ, ϕ[t/x] means that we need to substitute every free
occurrence of variable x with the term t in ϕ. For example, if we have the formula ϕ given
by x = y, then the substitution ϕ[t/x] = (t = y).

However, substitution of a term t for a variable x in a formula ϕ is only allowed if t is
free for x in ϕ. We say that a term t is free for a variable x if and only if the substituted
variables in ϕ[t/x] are not bound by a quantifier. In other words, if the variables in the
term do not become bound after substitution. In particular, for variables x, y, terms t, u, v
and a, . . . , b, formulas ϕ, φ, and predicate P ,
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(φ⊙ ϕ)[t/x] is defined as φ[t/x]⊙ ϕ[t/x] where ⊙ is any of ∧,∨,⇒
(¬φ)[t/x] is defined as ¬(φ[t/x])
(∀y : ϕ)[t/x] is

∀y : ϕ if x and y are equal,
∀y : ϕ[t/x] if x and y are not equal

similarly for ∃
(u = v)[t/x] is defined as u[t/x] = v[t/x]
P (a, . . . , b)[t/x] is P (a[t/x], . . . , b[t/x])
⊥[t/x] is simply ⊥ similarly for ⊤
z[t/x] is defined as

z if x and z are not equal
t if x and y are equal

Informally, the semantics of this language is just some interpretation (denoted as [[x]] for
some formula x) of the formulas. For example, we want to say ∀x : ϕ is verum only
if the variable being quantified over is in the universe of discourse. So, essentially, the
interpretation of

[[x]] is just the valuation of x
[[⊥]] ⇔ ⊥
[[t = u]]

⇔ ⊤ if [[t]] ⇔ [[u]]
⇔ ⊥ if [[t]] 6⇔ [[u]], note that 6⇒ is an abbreviation of ¬([[t]] ⇔ [[u]])

[[P (a, . . . , b)]]
⇔ ⊤ if a, . . . , b is in the universe of discourse
⇔ ⊥ otherwise

[[∀x : φ]]
⇔ ⊤ if [[φ[t/x]]] for every t in the universe of discourse
⇔ ⊥ otherwise

For a formal definition of semantics and models, the reader is directed to [5], [31], and
[35].

So, essentially, we need to understand the interpretation of the quantifiers. In essence, if
we have ∀x : p(x), we need to check that for any arbitrary substitution p[t/x] is true. And
if we have ∃x : p(x), then we need at least one substitution to hold. So, ∀x : p(x) would
need the following to be true p[a/x]∧p[b/x]∧· · · for all terms in the universe of discourse,
and ∃x : p(x) would need the following to be true p[a/x]∨ p[b/x]∨ · · · for all terms in the
universe of discourse. We can also form a truth table, just as before. An example of a
possible truth table would be the following,

p(a) p(b) ∀x : p(x) ∃x : p(x)
T T T T
T F F T
F T F T
F F F F

Note that we do not need to check that every substitution is satisfied as long as we pick
our terms to be arbitrary.

Analogous to propositional logic, we can define logical consequences and equivalences with
respect to the interpretation. We can also define contradictions and tautologies similarly.
So we can define the existential quantifier with the universal quantifier, and vice versa.
So ∃x : P (x) is equivalent to ¬(∀x : ¬P (x)) (see the below truth table). And, likewise,
∀x : P (x) is equivalent to ¬(∃x : ¬P (x)) (exercise).

P [a/x] P [b/x] ¬P [a/x] ¬P [b/x] ∀x : ¬P (x) ∃x : P (x) ¬(∀x : ¬P (x))
T T F F F T T
T F F T F T T
F T T F F T T
F F T T T F F
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Note that we can combine quantifiers in a formula, or even have more than one variable
in a quantifier. Also note that the order here matters, i.e., given the predicate P (x, y),
the formula ∃x : ∀y : P (x, y) is generally not equivalent to the formula ∀y : ∃x : P (x, y).

2.III Proof theory

An axiomatic system, also known as a theory , is any collection of axioms (i.e., formulas
that we take to be true), α, β, . . . , ζ. We can use these axioms to logically derive other
formulas. A formal proof of a formula p in an axiomatic system α, β, . . . , ζ, is a succession
of formulas q, . . . , t such that p = t, and that for each q, . . . , t we have one of the following
(call the chosen formula s).

s is an axiom. (PI)

s is a tautology. (PII)

∃c, a : s comes after c and a, (c ∧ a⇒ t) is true. (PIII)

(PIII) is a rule that corresponds to the Latin phrase modus ponendo ponens which trans-
lates to, “mode that by affirming affirms.” This rule essentially means, for propositions
p, q, if p⇒ q and we have p, then we get (deduce) q. We will usually denote this as either
(mp) or the Latin phrase itself.

We say the axiomatic system α, β, . . . , ζ (we call this S) proves the formula p, if there
exists a proof of p in S, and is denoted as S ⊢ p. In propositional logic, the axiomatic
system is the empty set, i.e., if proposition p can be proved in propositional logic, then
∅ ⊢ p. We call a formula a theorem of an axiomatic system, if the axiomatic system proves
the formula. We say an axiomatic system S is consistent , if S ⊢ ⊥. We can, equivalently,
say that it is consistent if contradicting formulas (i.e., α and ¬α) are not in the list of
axioms.

An example of this classical proof system (also known as the Hilbert system) is as fol-
lows.

Example 2.8. We will show that from p⇒ (q ⇒ r) and p⇒ q, we can prove p⇒ r.
Id est, (p⇒ (q ⇒ r)), (p⇒ q) ⊢ (p⇒ r).

First we want to show (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒ r)) is a tautology. This is
left as an exercise. And so, we then have the following proof.

1. p⇒ (q ⇒ r) axiom

2. p⇒ q axiom

3. (p⇒ (q ⇒ r)) ⇒ ((p⇒ q) ⇒ (p⇒ r)) tautology

4. (p⇒ q) ⇒ (p⇒ r) modus ponendo ponens 1,3

5. p⇒ r modus ponendo ponens 2,4

And thus completes the formal proof.

Remark. Note that in our proofs, we will usually call the axioms, premises.

Also note that to make things easier, instead of having to show tautologies constantly
(which are of the same form, except with different variables), we can form a collection of
axioms. For instance, in the above example, we said (p⇒ (q ⇒ r)) ⇒ ((p⇒ q) ⇒ (p⇒ r))
is a tautology. De facto, we can say (ϕ⇒ (φ⇒ ψ)) ⇒ ((ϕ⇒ φ) ⇒ (ϕ⇒ ψ)), where ϕ, φ
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and ψ are meta-variables (so can be replaced with any other variable in our language) is
a tautology (and hence can be used as an axiom in the Hilbert style proof).

Before going deeper into other systems of proof theory, we will talk about soundness and
completeness.

2.IV Soundness and Completeness

Here, we will see a connection between the semantics and syntax of logic. The proofs are
omitted, but can be found in [5], [29], and [31].

Lemma 2.9 (Soundness). If our theory, α, β, . . . , ζ, denoted by S, proves φ, then φ is a
logical consequence of S. That is, S ⊢ φ⇒ S � φ. In other words, all conclusions that are
derivable from true premises are true.

Lemma 2.10 (Completeness). If a formula φ is a logical consequence of our theory,
α, β, . . . , ζ, denoted by S, then S proves φ. That is, S � φ⇒ S ⊢ φ.
Theorem 2.11. Let S denote our theory a1, a2, . . . , an, and let p be a formula. Then
S � p if and only if S ⊢ p.
Both the Hilbert system and Natural deduction (also known as Fitch’s system) are sound
and complete for propositional and predicate logic.

2.V Natural deduction

In this section we will learn about natural deduction.

This is based on the presentations given in [6] and [29].

Natural deduction is a method of proof where we “naturally deduce” the arguments. This
method of formal logical proof corresponds closely to our non-formal mathematical proof.
The rules are called inference rules , and are written via proof trees, so what goes above
the line are called premises and below the line is the conclusion.

Example 2.12.
humans can fly I am human

I can fly

The premises are, “humans can fly,” and ”I am human.” So we conclude that, “I can
fly.”

If A and B are true, then we can conclude A ∧ B is also true. We call this rule the
conjunction introduction rule, and denote it as ∧-int. Similarly, if we have A, then we can
conclude A ∨ B or B ∨ A, and we call this rule the disjunction introduction rule, ∨-int.
We also have the conjunction elimination rule, where if we have A∧B, then we conclude
A and B (we write them as two separate rules, one for the left and one for the right).

A B

A ∧B ∧-int

A

A ∨B ∨-int B

A ∨B ∨-int

A ∧B
A

∧-elim A ∧B
B

∧-elim
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Another rule is called the implication elimination rule, if we have A and A ⇒ B, then
modus ponendo ponens and we conclude B.

A A⇒ B

B
⇒ -elim

Remark. Note that we will sometimes regard the above rule as ⇒ -elim (for instance, in
proof trees for readability), but usually we will write it as modus ponendo ponens .

We also have the implication introduction rule: if we have A and conclude C, then we
clearly have A → C. Also, if we assume A (which we write as [A]) and conclude C, then
we have A→ C.

A
...
C

A⇒ C
⇒ -int

[A]
...
C

A⇒ C
⇒ -int

This is because if our assumption is incorrect then ex falso sequitur quodlibet .

Example 2.13. An example of how a proof tree might look like is the following

[A] B

A ∧B ∧-int A ∧B ⇒ C

C
⇒ -elim

A⇒ C
⇒ -int

Which we can translate to a sequential proof.

1. B premise

2. A ∧B ⇒ C premise

3. A assumption

4. A ∧B ∧-int 1,3
5. C modus ponendo ponens 2,4

6. A⇒ C ⇒ -int 3–5

Now, suppose that we have Ai ∨ · · · ∨ Aj and we proved C from the assumption of each
Ai, . . . , Aj , then we can conclude C. This is the disjunction elimination rule.

Ai ∨ · · · ∨Aj

[Ai]
...
C

· · ·
[Aj ]
...
C

C
∨-elim

Since ex falso sequitur quodlibet , we also have the falsum elimination rule, i.e.,

⊥
A

⊥-elim

We also have the contradictum (contradiction) rule,

A ¬A
⊥ contradictum
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Another rule is one that follows the Latin phrase reductio ad absurdum, “reduction to
absurdity.” So if we can prove ⊥ from ¬A (equivalently, A→ ⊥), then we can conclude A
is true. This argument is known as proof by contradiction. For proof trees, we will denote
this as ¬-elim since it ‘eliminates the negation.’

[A→ ⊥]
...
⊥
A

¬-elim

The following example is taken from [6].

Proposition 2.14. ⊢ A⇒ (B ⇒ C) ⇒ ((A⇒ B) ⇒ (A⇒ C))

Proof.

1. A⇒ (B ⇒ C) assumption

2. A⇒ B assumption

3. A assumption

4. A⇒ (B ⇒ C) copied from 1

5. B ⇒ C modus ponendo ponens 3,4

6. A⇒ B copied from 2

7. B modus ponendo ponens 3,6

8. C modus ponendo ponens 5,7

9. A⇒ C ⇒ -int 3–8

10. (A⇒ B) ⇒ (A⇒ C) ⇒ -int 2–9

11. A⇒ (B ⇒ C) ⇒ ((A⇒ B) ⇒ (A⇒ C)) ⇒ -int 1–10

Proposition 2.15. ⊢ A⇒ ((((A⇒ B) ⇒ B) ⇒ C) ⇒ C)

Proof.

1. A assumption

2. ((A⇒ B) ⇒ B) ⇒ C assumption

3. A⇒ B assumption

4. B modus ponendo ponens 1,3

5. (A⇒ B) ⇒ B ⇒ -int 3–4

6. C modus ponendo ponens 2,5

7. (((A⇒ B) ⇒ B) ⇒ C) ⇒ C ⇒ -int 2–6

8. A⇒ ((((A⇒ B) ⇒ B) ⇒ C) ⇒ C) ⇒ -int 1–7
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Proposition 2.16. ⊢ A⇒ (A⇒ A)

Proof.

1. A hypothesis

2. A copied from 1

3. A copied from 1

4. A⇒ A ⇒ -int 2–3

5. A⇒ (A⇒ A) ⇒ -int 1–4

The next result shows that the disjunction is commutative. It is easy to check that
conjunctions are also commutative, and is left as an exercise.

Proposition 2.17. p ∨ q ⊢ q ∨ p

Proof.

1. p ∨ q premise

2. p assumption

3. q ∨ p ∨-int 2
4. q assumption

5. q ∨ p ∨-int 4
6. q ∨ p ∨-elim 2–3, 4–5

This next result is the opposite of modus ponendo ponens , and is also known by its Latin
phrase modus tollendo tollens, this translates to, “mode of denying denies.” Which means
that if we have p⇒ q and ¬q, then we can conclude ¬p.
Proposition 2.18. p⇒ q,¬q ⊢ ¬p

Proof.

1. p⇒ q premise

2. ¬q premise

3. p assumption

4. q modus ponendo ponens on 1,3

5. ⊥ contradictum 2,4

6. p⇒ ⊥ ⇒ -int 3–5

7. ¬p 6 rewritten

This next result is known as the law of excluded middle, or in Latin: tertium non datur ,
which translates to, “the third is not given.”
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Proposition 2.19. ⊢ p ∨ ¬p

Proof.

1. ¬(p ∨ ¬p) assumption

2. p assumption

3. p ∨ ¬p ∨-int 2
4. ⊥ contradictum 1,3

5. p⇒ ⊥ ⇒ -int 2–4

6. ¬p 5 rewritten

7. p ∨ ¬p ∨-int 6
8. ⊥ contradictum 1,7

9. p ∨ ¬p reductio ad absurdum 1–8

Proposition 2.20. ¬(p ∧ q) ⊣⊢ ¬p ∨ ¬q

Proof. For ⊢:

1. ¬(p ∧ q) premise

2. ¬p ∨ ¬q ⇒ ⊥ assumption

3. ¬(¬p ∨ ¬q) 2 rewritten

4. p⇒ ⊥ assumption

5. ¬p 4 rewritten

6. ¬p ∨ ¬q ∨-int 5
7. ⊥ contradictum 3,6

8. p reductio ad absurdum 4–7

9. q ⇒ ⊥ assumption

10. ¬q 9 rewritten

11. ¬p ∨ ¬q ∨-int 10
12. ⊥ contradictum 3,11

13. q reductio ad absurdum 9–12

14. p ∧ q ∧-int 8,13
15. ⊥ contradictum 3,14

16. ¬p ∨ ¬q reductio ad absurdum 2–15

For ⊣:
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1. ¬p ∨ ¬q premise

2. p ∧ q assumption

3. p ∧-elim 2

4. q ∧-elim 2

5. ¬p assumption

6. ⊥ contradictum 2,5

7. ¬q assumption

8. ⊥ contradictum 3,7

9. ⊥ ∨-elim 1,5–6,7–8

10. p ∧ q ⇒ ⊥ ⇒ -int 2–9

11. ¬(p ∧ q) 10 rewritten

Proposition 2.21. p⇒ q ⊢ ¬q ⇒ ¬p and ¬q ⇒ ¬p ⊢ p⇒ q

Proof. For p⇒ q ⊢ ¬q ⇒ ¬p, we have,

1. p⇒ q premise

2. ¬q assumption

3. ¬p modus tollendo tollens on 1,2

4. ¬q ⇒ ¬p ⇒ -int 2–3

And for ¬q ⇒ ¬p ⊢ p⇒ q, we have,

1. ¬q ⇒ ¬p premise

2. p assumption

3. ¬p assumption

4. ⊥ contradictum 2,3

5. ¬p⇒ ⊥ ⇒ -int 3–4

6. ¬¬p 5 rewritten

7. ¬¬q modus tollendo tollens 1,6

8. q ⇒ ⊥ assumption

9. ¬q 8 rewritten

10. ⊥ contradictum 7,9

11. q reductio ad absurdum 8–10

12. p⇒ q ⇒ -int 2–11

Remark. Note that in the preceding result, we used modus tollendo tollens from Proposi-
tion 2.18. We can use any derived result to further simplify a proof.
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When we have A ⊢ B and B ⊢ A, just as seen from the previous result, we say that they
are provably equivalent , and is written as A ⊣⊢ B. It is a theorem that for formulas p, q,
we have q is a logical consequence of p if and only if p proves q, which we have already
seen in the previous section (Theorem 2.11).

The rule for equality introduction is that any term (i.e., variables or constants) is equal to
itself,

t = t
= -int

We also have the equality elimination rule,

s = t ϕ[s/x]

ϕ[t/x]
= -elim

The following result shows that the equality predicate is reflexive (ipso facto from equality
introduction), symmetric and transitive.

Proposition 2.22. s = t ⊢ t = s and s = t, t = u ⊢ s = u

Proof. For s = t ⊢ t = s we have,

1. s = t premise

2. s = s = -int

3. t = s = -elim 1,2, ϕ(x) := (x = s)

For s = t, t = u ⊢ s = u we have,

1. s = t premise

2. t = u premise

3. s = u = -elim 1,2, ϕ(x) := (s = x)

Now, we have the elimination inference rule for ∀ and the introduction inference rule for
∃, which are clear. If we have ϕ[t/x], then there exists some x such that ϕ. And if we
have ϕ for all x, then φ[t/x] for some t in the universe of discourse.

ϕ[t/x]

∃x : ϕ
∃-int ∀x : ϕ

ϕ[t/x]
∀-elim

The introduction rule for ∀ is valid when t is arbitrary. So, to prove φ for all x, we will
show φ[t/x] for some arbitrary t.







t
...

ϕ[t/x]







∀x : ϕ
∀-int
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Now suppose we know that there exists some x such that ϕ, and we proved p from ϕ[t/x]
for some t, then we get p. This is the elimination rule for ∃.

∃x : ϕ











t
ϕ[t/x]

...
p











p
∃-elim

Proposition 2.23. ∃x : ¬ϕ ⊣⊢ ¬∀x : ϕ

Proof. For ⊢:

1. ∃x : ¬ϕ premise

2. ∀x : ϕ assumption

3. t ¬ϕ[t/x] assumption

4. ϕ[t/x] ∀-elim 2

5. ⊥ contradictum 3,4

6. ⊥ ∃-elim 1,3–5

7. ∀x : ϕ⇒ ⊥ ⇒ -int 2–6

8. ¬∀x : ϕ 7 rewritten

For ⊣:

1. ¬∀x : ϕ premise

2. ∃x : ¬ϕ⇒ ⊥ assumption

3. ¬∃x : ¬ϕ 2 rewritten

4. t

5. ϕ[t/x] ⇒ ⊥ assumption

6. ¬ϕ[t/x] 5 rewritten

7. ∃x : ¬ϕ ∃-int 6
8. ⊥ contradictum 3,7

9. ϕ[t/x] reductio ad absurdum 5–8

10. ∀x : ϕ ∀-int 4–9
11. ⊥ contradictum 1,10

12. ∃x : ¬ϕ reductio ad absurdum 2–11

Definition 2.24. Rules for a connective a are harmonious if, for statements φ and ψ,
φaψ is the strongest assertion you can deduce from the assumptions of a-int, and φaψ
is the weakest thing that implies the conclusion of the a-elim rule.

To show harmony, we need to show that the introduction and elimination rule do not
change our information, but only provide us with a different structure.
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Proposition 2.25. The introduction and elimination rules for ∨,∧,⇒, ∀, ∃ and = are
harmonious.

Proof. For ∧: we need to show that when we have φ and ψ, the introduction rule gives us
φ ∧ ψ, and the elimination rule on this gives us both φ and ψ (what we started with).

φ ψ

φ ∧ ψ ∧-int

ψ
∧-elim

φ ψ

φ ∧ ψ ∧-int

φ
∧-elim

Likewise, we also have that if we apply the elimination rule first, then the introduction
rule we get back what we started with.

φ ∧ ψ
φ

∧-elim φ ∧ ψ
ψ

∧-elim

ψ ∧ ψ ∧-int

Now, for ∨, we first need to deduce φ ∨ ψ from either φ or ψ, and then we deduce ϕ by
deducing it from both φ and ψ. Similarly, if we start with φ∨ψ, then by introduction, we
can hypothetically conclude φ ∨ ψ from both φ and ψ, and finally by elimination we get
back what we started with.

φ

φ ∨ ψ ∨-int
[φ]
...
ϕ

[ψ]
...
ϕ

ϕ
∨-elim

φ ∨ ψ [φ]

φ ∨ ψ ∨-int [ψ]

φ ∨ ψ ∨-int

φ ∨ ψ ∨-elim

For ⇒: we start with φ⇒ ψ, and assume φ, to conclude ψ, and then use the introduction
rule again to get back what we started with. Similarly, if we have φ and prove ψ from
assuming φ, then we get ψ.

φ⇒ ψ [φ]

ψ
⇒ -elim

φ⇒ ψ
⇒ -int

[φ]
...
ψ

φ→ ψ
⇒ -int φ

ψ
⇒ -elim

For ∀,
φ[t/x]

∀x : φ
∀-int

φ[t/x]
∀-elim

∀x : φ

φ[t/x]
∀-elim

∀x : φ
∀-int

For ∃,

φ[t/x]

∃x : φ
∃-int







a φ[a/x]
...
ψ







ψ
∃-elim

∃x : φ
φ[t/x]

∃x : φ
∃-int

∃x : φ
∃-elim

Lastly, for =,

t = t
= -int φ[t/x]

φ[t/x]
= -elim

s = t
s = s

= -int

s = t
= -elim
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A nice exercise to do is to prove the following.

Proposition 2.26.

(i) ¬(ϕ ∧ φ) ⊣⊢ ¬ϕ ∨ ¬φ
(ii) ¬∃x : ϕ ⊣⊢ ∀x : ¬ϕ
(iii) ∀x : ∀y : ϕ ⊣⊢ ∀y : ∀x : ϕ

(iv) ∃x : ∃y : ϕ ⊣⊢ ∃y : ∃x : ϕ

(v) if x is not free in φ, then (∀x : ϕ) ∧ φ ⊣⊢ ∀x : (ϕ ∧ φ)
(vi) if x is not free in φ, then (∃x : ϕ) ⇒ φ ⊣⊢ ∀x : (ϕ⇒ φ)

The above result, namely, parts (iii) and (iv), we see ∀x : ∀y can be written as ∀x, y,
likewise ∃x : ∃y can be written as ∃x, y.
This concludes this brief chapter on first-order logic.

3 Axiomatic Set Theory

The aim of this chapter is to discuss the axioms of ZFC.

This chapter is based on the presentations given in [5], [11], [12], [25], [32], and [36].

3.I Motivation

Intuitively, a set is any mathematical object. A set can be equal to another set, be
contained in another set, and can contain other sets. We have that either set x is in set y
or set x is not in set y, written as x ∈ y and x /∈ y, respectively.

In Naive set theory, we have an axiom scheme known as unrestricted comprehension, i.e.,
we can define a set for all x such that φ(x) (which we write as {x : φ(x)}). This brings
up inconsistencies in our system. We have the following contradictory example, known as
Russell’s paradox . Let A denote {x : x /∈ x}. Then then this would mean A ∈ A if and
only if A /∈ A.

These inconsistencies motivate the idea of formalising set theory.

3.II The language of set theory

Formally, a set is not defined, apart from what the axioms say. So, we will define a class
as any collection of objects. A proper class is a class which is not a set.

The language of predicate logic LProd, together with the set membership relation symbol
∈, is the formal language of set theory L.
Our intended interpretation of the set membership relation symbol ∈, say for the sentence
x ∈ y, is if indeed the set x is a member (element) of set y. The negation of this relation
(i.e., ¬(x ∈ y)) is x /∈ y, and means x is not a member of y. We can also say y ∋ x when
x ∈ y.

The subset relation symbol ⊆, written as x ⊆ y, is an abbreviation of ∀a : (a ∈ x⇒ a ∈ y).
The negation of this is 6⊆. And, obviously, y ⊇ x when x ⊆ y. We can think of x ⊆ y as,
“x is contained in y” or “x is a subset of y.”
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In summary, the alphabet of L consists of: predicate symbols, variables, constant symbols,
and the following

∧ ∨ ¬ ⇒ ⇔ ∀ ∃ ( ) , = ∈
The syntax is given by one of the following (this is a slightly different formulation than
we did in the previous section, albeit captures the same idea).

(i) Given variables x and y, then x ∈ y and x = y are formulas.

(ii) If ϕ and φ are formulas, then so are all of (¬ϕ), (ϕ∧φ), (ϕ∨φ), (ϕ⇒ φ) and (ϕ⇔ φ).

(iii) ∀x : ϕ and ∃x : ϕ are formulas, where x is a variable and ϕ is a formula.

The universe of discourse of the quantified variables in this language is the universe of sets
(which we will see soon is not a set).

For a more formal definition of the language, see [21].

3.III The axioms of ZFC & the fundamentals of sets

We shall start with the existence of a set.

Axiom 1 - Empty set. ∃x : ∀y : (y /∈ x)
There exists a set that contains no elements.

Axiom 2 - Extensionality. ∀x : ∀y : (x = y) ⇔ ((x ⊆ y) ∧ (y ⊆ x))
Two sets are equal if and only if they have the same elements.

Remark. Most texts do not begin with abbreviating the subset relation and dive straight
into the axiom of extensionality, in this case, they would write it as ∀x : ∀y : ((x = y) ⇔
∀z : (z ∈ x⇔ z ∈ y)).

This axiom will inform us when an object is not a set. So, if the statement x ∈ y is not a
formula, then x and y are not both sets. Thus, we will only deal with sets from this point
forward.

And now we can show that there is de facto only one empty set, which we denote by ∅.
We start with some results that will help us.

Lemma 3.1. Given formulas p and r. We have the tautology ((p⇒ r) ∧ p) ⇒ r.

Proof. Denote p⇒ r by q and q ∧ p by s, so we have the following truth table.

p r q s s⇒ r
T T T T T
T F F F T
F T T F T
F F T F T

Lemma 3.2. Given formulas x, y and z. Where x and z are both empty sets, i.e. ∀y : y /∈
z and ∀y : y /∈ x. We have the following tautology: (y /∈ x) ⇒ (x ⊆ z); consequentially, so
is (y /∈ z) ⇒ (z ⊆ x).
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Proof. For this to be a tautology, we need x ⊆ z to be verum, which is rewritten as
∀y : (y ∈ x) ⇒ (y ∈ z). We already know y ∈ x is falsum since ∀y : y /∈ x is verum. And
so ex falso sequitur quodlibet.

Note that the unique existential quantifier can be defined via the existential and universal
(or only existential, and only universal). So ∃!x : P (x) is equivalent to ∃x : ∀y : P (y) ⇔
x = y.

Theorem 3.3. The empty set is unique, i.e., there exists only one empty set: ∅. This
can be formally written as (Axioms 1,2) ⊢ ∃!x : ∀y : (y /∈ x).

Proof. Suppose the contrary, and let x and x′ be empty sets such that x 6= x′. So by the
axiom this means, ∀y : y /∈ x and ∀y : y /∈ x′. We give a sketch of a semi-formal proof.

1. ¬∃!x : ∀y : (y /∈ x) assumption

2. ∀y : y /∈ x Axiom 1

3. ∀y : y /∈ x′ Axiom 1

4. x 6= x′ from 1,2,3

5. (y /∈ x) ⇒ (x ⊆ x′) tautology by lemma

6. (y /∈ x′) ⇒ (x′ ⊆ x) tautology by lemma

7. x ⊆ x′ lemma and modus ponendo ponens 2,5

8. x′ ⊆ x lemma and modus ponendo ponens 3,6

9. x = x′ from 7,8

10. ⊥ contradictum 4,9

11. ∃!x : ∀y : (y /∈ x) reductio ad absurdum 1–10

Thus, there can only be one empty set, ∅.

Remark. A non-formal (in the sense of logic) sketch of the above proof would be to first
assume the contrary, and let x and x′ both be empty sets such that x 6= x′. Which by
Axiom 2 would mean ∀y : y /∈ x and ∀y : y /∈ x′. And so by the subset abbreviation, we
would have x ⊆ x′ and x′ ⊆ x. Finally, by Axiom 2, we would then have x = x′, and so
reductio ad absurdum, thus completing the proof.

Axiom 3 - Pair set. ∀x : ∀y : ∃m : ∀u : (u ∈ m) ⇔ ((u = x) ∨ (u = y))
Given sets x and y. There exists a set whose elements are exactly x and y.

We will write this set, m, as {x, y}. Here, {, } are added informally to make our language
more readable. It is very important to note the brackets {}, since obviously set x is not
equal to {x}.
It is clear from Axiom 2, if x = y, then {x, y} = {x}. So, if we have set x, then we know
{x} is also a set. The following result shows the uniqueness of the pair set and is left as
an exercise.

Proposition 3.4. Given sets x and y. We have the pair set {x, y} equal to {y, x}.
Given sets x and y, we can define an ordered pair (x, y), with the set {{x}, {x, y}}. This
is a set since by Axiom 3, we have {x} and {x, y} are sets, and so it follows from using
Axiom 3 again. Ordered pairs are useful because (x, y) 6= (y, x), which we can see from
the following proposition.
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Proposition 3.5. Given sets x, y, z, w, if (x, y) = (z, w), then x = z and y = w.

Proof. We rewrite the ordered pairs (x, y) and (z, w) as {{x}, {x, y}} and {{z}, {z, w}},
respectively. If x = y, then we would have {{x}, {x, x}} = {{x}, {x}} = {{x}}. And so by
Axiom 2, we have that both {z} = {x} and {z, w} = {x}, which, again by Axiom 2, would
mean z = x = w = y. So, now assume x 6= y and z 6= w. By Axiom 2, we have {x} = {z}
which means x = z; otherwise, we would have {x} = {z, w} which would contradict our
assumption of z 6= w. We also have {x, y} = {z, y} = {z, w}, which means y = w.

By Axiom 1, we have ∅, and by repeatedly using Axiom 3, we get {∅}, {{∅}}, {∅, {∅}}, . . . ad
infinitum. So, thus far, our theory (i.e., Axioms 1, 2, and 3) shows the existence of infinitely
many sets. However, we have only shown the existence of sets with ‘zero’, ‘one’ and ‘two’
elements, where the number words ‘zero’, ‘one’ and ‘two’ indicate the number of elements
in a set. More precisely, ‘zero’ elements means that there does not exist any elements, i.e.,
∅. Set m has ‘one’ element if and only if ∃x : (m = {x}), this is also known as a singleton
set. Finally, set m has ‘two’ elements if and only if ∃x, y : (m = {x, y}) ∧ (x 6= y).

Remark. Note that we can form ordered triples, say (x, y, z), by setting it as ((x, y), z)
which is a set by Axiom 3. And similarly, ordered quadruples, ordered quintuples, and so
on.

Axiom 4 - Union set. ∀x : ∃u : ∀y : ((y ∈ u) ⇔ (∃s : (y ∈ s) ∧ (s ∈ x)))
Given a set x. There exists a set u, whose elements are the elements of the elements of x.
We denote this set u as,

⋃

x.

Given sets a, b, c. By Axiom 3 (pair set), we have {a, b} and {c}, and so we also have
{{a, b}, {c}}. So by Axiom 4 (union set), we get

⋃{{a, b}, {c}} = {a, b, c}. Also, by
Axiom 4, we have

⋃{a, b}, which contains all the elements in a and b, we denote this as
a ∪ b, just as normal.

So now we can show that there exists a set with more than ‘two’ elements from Axiom 4
(union set). We can have ‘three’ elements by essentially unionising the set that has ‘two’
elements, call it m, with {m}. We will see later that this is known as the successor.

Remark. For better readability, we have for set y, the formula ∀x ∈ y : P (x) is an abbre-
viation of ∀x : (x ∈ y ⇒ P (x)). And similarly we have ∃x ∈ y : P (x) is an abbreviation of
∃x : (x ∈ y) ∧ P (x).
Axiom 5 - Replacement schema.

∀x : [∀y, z, u : ((φ(y, z) ∧ φ(y, u)) ⇒ (z = u)) ⇒ (∃m : ∀t : (t ∈ m) ⇔ (∃s ∈ x : φ(s, t)))]

Given a set x and a formula φ(y, t), where for any y there exists at most one t such that
φ(y, t). Then there exists a set m of all those t, written as {t : ∃y ∈ x : φ(y, t)}.
Essentially, this axiom says that the range of a function exists (see below for precise
definitions). It is clear that this set m is unique from Axiom 2 (exercise).

The following result is known as the separation axiom schema or the restricted compre-
hension axiom schema.

Proposition 3.6. Given a formula P (y) and a set x, we then have the set of all t ∈ x
such that P (t), i.e., {t ∈ x : P (t)}.
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Proof. Let x be a set, P (y) be a formula, and φ(y, t) denote the formula y = t ∧ P (t).
Then we have that for any y we have y = t if P (t) holds. By Axiom 5, we have the set
{t : ∃y ∈ x : φ(y, t)}, which we can rewrite as {t ∈ x : P (t)}.

Remark. If we assume that the universe of sets is not empty (some texts add this as an
axiom, namely “Axiom 0” and it is stated by ∃x : x = x), then we can see that Axiom 1
is implied from the other axioms now. Where from Axiom 5 and Proposition 3.6, we can
see ∃x : ∀y : (y /∈ x). And so by Axiom 2, we have ∃!x : ∀y : (y /∈ x).

Note that Axiom 5 and Proposition 3.6 (comprehension schema) are axiom schemes, so
they provides an axiom for each formula. Thus we have an infinite number of axioms.

Now given a set x. We have the intersection of x, denoted by
⋂

x, and is defined as
{a ∈ ⋃x : φ(a, x)}, where φ(a, x) := ∀b ∈ x : a ∈ b. This is a set by Proposition 3.6. We
say that the sets a and b are disjoint if a, b ∈ x and

⋂

x = ∅. We can also define the
complement of set x ⊆ y, as y \ x := {u ∈ y : u /∈ x}, which is a set by Proposition 3.6.
So, given sets x and y, we have the intersection, x ∩ y := {a ∈ x : a ∈ y}.
Now we can see that the set of all sets does not exist, i.e., the universe of sets. Since if we
suppose there does exist one, then U = {x : x = x} is the universe of sets. So, following
Russel’s paradox, we can let A = {x ∈ U : x /∈ x}, which is a set by Proposition 3.6. So we
know A ∈ U , but then we get A /∈ A if and only if A ∈ A. And so reductio ad absurdum.
Thus, the universe of sets is a proper class.

Axiom 6 - Power set. ∀x : ∃y : ∀a : (a ∈ y) ⇔ (a ⊆ x)
Given a set x, there exists a set y, denoted as P(x), whose elements are the subsets of x.

Example 3.7. P(∅) = {∅}
P({∅}) = {∅, {∅}}
P({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}}

Given sets X and Y , we can define the Cartesian product set X × Y , which satisfies
X × Y ⊆ P(P(

⋃{X,Y })). Which as we know is the set of ordered pairs of X and Y , i.e.,
(x, y) = {{x}, {x, y}} where x ∈ X and y ∈ Y . More precisely, we can write,

X × Y :=
{

z ∈ P
(

P
(

⋃

{X,Y }
))

: p(X,Y )
}

,

where p(X,Y ) := ∃u : ∃v ((u ∈ X) ∧ (v ∈ Y ) ∧ (z = (u, v))). This is obviously a set, by
Axioms 3, 4, 5, and 6.

Given sets A and B, a relation R between A and B is R ⊆ A×B, i.e., it is a relation if it
only consists of ordered pairs. A relation R on A is R ⊆ A×A. A relation f ⊆ A×B is
a map, or function, from A to B, if for each a ∈ A, there exists a unique b ∈ B such that
(a, b) ∈ f . We will write the map as f : A → B, given by a 7→ f(a), where f(a) = b such
that (a, b) ∈ f .

Precisely, given a set f , it is a function from X to Y if f ⊆ X × Y and

∀a : (a ∈ X) ⇒ (∃b : (b ∈ Y ) ∧ ((a, b) ∈ f) ∧ ((∀z : (a, z) ∈ f) ⇒ (z = b))) .

We define the domain and range of any set f respectively as

domain of f =
{

a ∈
⋃⋃

f : ∃b : (a, b) ∈ f
}

,



3.III The axioms of ZFC & the fundamentals of sets 25

range of f =
{

b ∈
⋃⋃

f : ∃a : (a, b) ∈ f
}

.

Using these definitions, we can instead define f to be a function if and only if f is a
relation and ∀x ∈ domain of f : ∃!y : (x, y) ∈ f . And so we denote the unique y by f(x).
If we have f ⊆ X × Y and the domain of f is equal to X and the range of f is a subset
of Y , then we can write the map as f : X → Y .

Now the image of A under f , imf (A) (usually written as f [A]) is the set {f(a) : a ∈ A}.
Now, we say that the map is injective if ∀a, b ∈ A : f(a) = f(b) ⇒ a = b. Or surjective if
f(A) = B (or range of f is B). Or bijective if it is both injective and surjective.

Given maps f : A → B and g : B → C, we have the composition map g ◦ f : A → C,
defined by a 7→ g(f(a)). It is clear that this is a set and a map, more precisely we have,

g ◦ f = {(a, c) ∈ A× C : ∃b ∈ B : ((a, b) ∈ f) ∧ ((b, c) ∈ g)}.

It is easy to see that composition of maps is associative, and is left as an exercise, i.e.,
h ◦ (g ◦ f) = (h ◦ g) ◦ f for f : A→ B, g : B → C and h : C → D.

Now given a map f : A→ B. If f is a bijection, then we can define the inverse map f−1,
such that f−1 ◦ f = idA and f ◦ f−1 = idB , where idA : A→ A, a 7→ a and idB : B → B,
b 7→ b and are known as the identity map. It is easy to see that the inverse map exists if
and only if the map is bijective.

We can also define the preimage of a map f : A → B for C ⊆ B, f−1(C) = {a ∈ A :
f(a) ∈ C}.
We can also define the set of all functions on set X into set Y by Y X := {f ∈ P(X × Y ) :
(f is a map) ∧ (∀x ∈ X : ∃y ∈ Y : (x, y) ∈ f)}.

Definition 3.8. Given a set A and a relation R,

(i) R is reflexive on A if and only if ∀a ∈ A : aRa.

(ii) R is symmetric on A if and only if ∀a, b ∈ A : aRb⇔ bRa

(iii) R is antisymmetric on A if and only if ∀a, b ∈ A : (aRb ∧ bRa) ⇒ (a = b)

(iv) R is asymmetric on A if and only if ∀a, b ∈ A : aRb 6⇒ bRa

(v) R is transitive on A if and only if ∀a, b, c ∈ A : (aRb ∧ bRc) ⇒ aRc

(vi) R satisfies linearility (or trichotomy) on A if and only if ∀x, y ∈ A : (xRy) ∨
(yRx) ∨ (x = y)

We call a relation R an equivalence relation on set A if and only if R is reflexive, symmetric
and transitive on A. We can then define the equivalence class of a ∈ A as [a] = {b ∈ A :
aRb}. We can also then define the quotient set of A by R as, A/R := {[a] : a ∈ A}.
Exercise: show that the quotient set is indeed a set. It is also easy to see that the
equivalence class of two elements, say [a] and [b], are either related (and so are equal) or
they are disjoint, i.e., either [x] = [y] or [x] ∩ [y] = ∅.
A relation R on a set A is a weak partial order on A if and only if R is reflexive, transitive,
and antisymmetric on A. We say that it is a strict partial order if R is not reflexive,
transitive, and asymmetric on A. We say that R is a weak total order if either xRy or
yRx for any x, y ∈ A. We say that R is a strict total order if for any x, y ∈ A such that
x 6= y, then either xRy or yRx.



4. CONSTRUCTION OF NUMBER SYSTEMS 26

Remark. Observe that in our definition above, we could have said that the relation R is
a strict partial order if and only if R is not reflexive and transitive on A. This is because
these two properties imply xRy and yRx cannot both hold for all x, y ∈ A. We see this
by assuming that for x, y ∈ A, let xRy and yRx. Then by transitivity, we see xRx, a
contradiction to the not reflexive property.

Axiom 7 - Infinity. ∃x : (∅ ∈ x) ∧ (∀y : (y ∈ x) ⇒ (y ∪ {y} ∈ x))
Given a set y. There exists a set that contains the empty set, y, and y ∪ {y}.
We can define the natural numbers using this axiom (see next chapter).

Axiom 8 - Choice. ∀x : P (x) ⇒ ∃y : ∀a ∈ x : ∃!b ∈ a : a ∈ y, where P (x) ⇔ (∃a : (a ∈
x) ∧ (∀a : ∀b : (a ∈ x) ∧ (b ∈ x)) ⇒ ⋂{a, b} = ∅)
Given a set x, whose elements are non-empty and mutually disjoint. There exists a set y
which contains exactly one element of each element of x.

We will discuss this axiom a bit further in the next chapter (§4.I.II).

Axiom 9 - Foundation. ∀x : ∃a : (a ∈ x) ⇒ (∃y ∈ x :
⋂{x, y} = ∅)

Every non-empty set has a minimal element. More precisely, every non-empty set x
contains an element y that has none of its elements in common with x.

This axiom tells us that there exists no set that contains itself as an element. So, given set
x, we have x /∈ x. Otherwise, we would have x ∈ x and x ∈ {x}, which is a contradiction
to Axiom 9, since x ∩ {x} = x 6= ∅.

4 Construction of Number Systems

4.I Construction of N.

In this chapter we will construct the number systems N,Z,Q,R, and C from a purely
set-theoretic way.

This is based on the presentations given in [5], [9], [11], [12], [15], [21], [25], and [32].

Remark. The original Zermelo axioms had the following axiom for infinity

∃x : (∅ ∈ x) ∧ (∀y : (y ∈ x) ⇒ ({y} ∈ x))

Id est, given a set y, there exists a set that contains the empty set, y, and {y}. And so
via this definition, we would have the set of natural numbers {∅, {∅}, {{∅}}, . . .}, so each
number represented by Arabic numerals would be defined as 0 = ∅, 1 = {∅}, 2 = {{∅}}, . . ..
This is known as Zermelo’s ordinals. This, however, was not a good definition since the
set membership ∈ is not transitive via this definition of natural numbers. For instance,
∅ ∈ {∅} and {∅} ∈ {{∅}}, however ∅ /∈ {{∅}}.
From the infinity axiom, there exists a set x such that ∅ ∈ x, and if y ∈ x, then y∪{y} ∈ x.
We call any set that has these properties of the infinity axiom, an inductive set. And it
turns out that if y and x are both sets that have the inductive property, then the set y∩x
also has the inductive property. This is because if we have ∅ ∈ x and ∅ ∈ y, then ∅ ∈ y ∩ x.
And so if we have z ∈ y ∩ x, then by the definition of intersection, we have z ∈ y and
z ∈ x, and so by the inductive property we have z ∪ {z} ∈ y and z ∪ {z} ∈ x, and hence
we get z ∪ {z} ∈ y ∩ x.
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Definition 4.1. Given any inductive set x (from the infinity axiom), we define the set
of natural numbers as N :=

⋂{z ∈ P(x) : z is inductive}, i.e., the intersection of all
inductive subsets of any inductive set.

We can see that this set N is de facto inductive. This follows from the above, y ∩ x is
inductive if both y and x are inductive, and so ∅ is in N since it has to be in every inductive
set, and so has to be in the intersection of all subsets of an inductive set x. And if we
have y ∈ N, then we have y ∈ z for all z ⊆ y such that z is inductive. And thus for any z,
we get y ∪ {y} ∈ z, and so will be in the intersection N.

We call a ∈ N, a natural number . Now we have (∅ ∈ N), (∅ ∪ {∅} = {∅} ∈ N), . . .. So
N = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .}. Then we can define the numbers via Arabic
numerals, i.e., 0 := ∅, 1 := {∅}, 2 := {∅, {∅}}, and so on.

We can then define the successor of a set in N as S : N → N, n 7→ n ∪ {n}. So, S(0) =
S(∅) = ∅ ∪ {∅} = {∅} = 1, S(1) = S({∅}) = {∅} ∪ {{∅}} = {∅, {∅}} = 2, and so on. It is
easy to see if S(m) = S(n) then m = n, since if m∪ {m} = n∪ {n}, then either m ∈ n or
m ∈ {n} (which means m = n) and n ∈ m or n ∈ {m} (i.e., n = m). And if we assume
m 6= n, then m ∈ n and n ∈ m, which is a contradiction.

We can also define the predecessor of a set in N as P : N \ {∅} → N the inverse successor
map given by n∪{n} 7→ n. Or we can also say that the predecessor is the map n 7→ m, such
that m ∈ n and S(m) = n. So, P (3) = P ({∅, {∅}, {∅, {∅}}}) = P ({∅, {∅}} ∪ {{∅, {∅}}}) =
{∅, {∅}} = 2, and likewise P (2) = 1 and so on.

This next result is known as definition by recursion (see [12] for proof).

Theorem 4.2. Given a set A, a map g : A→ A, and a ∈ A. Then there exists a unique
map f : N → A such that f(0) = a and f(S(n)) = g(f(n)) for all n ∈ N.

So, now we can recursively define Sn as S ◦ SP (n) if n ∈ N \ {∅}, and S∅ := idN.

For any subset z ⊆ N, if z has the inductive property, then N ⊆ z since it is the intersection
of all inductive sets, and so z = N. This provides a basis for “proofs by induction.”

Now we define the relation < on N. So for any a, b ∈ N, we say a < b if and only if a ∈ b.
For instance, 1 < 3 since {∅} ∈ {∅, {∅}, {∅, {∅}}}. We also define the relation ≤, which for
a ≤ b is just (a < b) ∨ (a = b). The relation <, is transitive, not reflexive and is linear.
We will show this by induction. But, first we will start with a result that will help us.

Remark. For the sake of completeness, if a < b then b > a, likewise if a ≤ b then b ≥ a.

Lemma 4.3. For any a, b ∈ N, if a < b, then S(a) < S(b).

Proof. We want to show that the set z = {b ∈ N : (a < b) ⇒ (S(a) < S(b))} ⊆ N for
a ∈ N is inductive, i.e., proof by induction on b. Clearly, ∅ ∈ z, since a ∈ ∅ is false,
and so ex falso sequitur quodlibet , and so S(a) < S(∅). Now if b ∈ z, then (a < b) ⇒
(S(a) < S(b)). So we want to show (a < S(b)) ⇒ (S(a) < S(S(b)). And since a < b,
then a < S(b) so a ∈ S(b), and so either a ∈ b or a ∈ {b}. If a ∈ {b}, then a = b,
and so S(a) = S(b) ∈ S(S(b)). Now if a ∈ b, then we know S(a) ∈ S(b), and so clearly
S(a) ∈ S(S(b)). So, the result then follows.

Remark. Note that in the preceding (and the following) result, we used < interchangeably
with ∈. This is to emphasise the definition.
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Proposition 4.4. The relation < is not reflexive, transitive and linear on the set of
natural numbers, i.e., ∈ is not reflexive, transitive and linear on N.

Proof. The not-reflexive property follows from the axiom of foundation, where we saw
that no set can contain itself as an element. And so for any a ∈ N, we have a 6< a since
a /∈ a.

For the transitive property, we want to show that for all c ∈ N, if we have a < b < c,
then we have a < c, where a, b ∈ N. So, we want to show the following set is inductive,
z = {c ∈ N : (a < b < c) ⇒ (a < c)} ⊆ N. Clearly, ∅ ∈ z since a < b < ∅ is false and
so ex falso sequitur quodlibet . If we have c ∈ z, then a < b < c and so a < c. So, then if
a < b < S(c), then we have b ∈ S(c), which by the definition of unions, we have b ∈ c or
b ∈ {c}. If it is the latter, then b = c (and the result follows), otherwise b ∈ c, and we
already know a < c if a < b < c, so we have S(c) ∈ z. Thus ends the proof by induction
on N, and hence shows the transitive property of the relation.

For the linearality of <, we will also want to use proof by induction on N. So, we want
to show that for all a ∈ N we will have a < b or a = b or b < a, where b ∈ N. So, we let
z = {a ∈ N : (a < b) ∨ (a = b) ∨ (b < a)} ⊆ N. Clearly, we have ∅ ∈ z since ∅ < b (since
∅ contains all other natural numbers) or b = ∅, and so the result then follows. If we have
a ∈ z, then we have that either a < b or b < a or a = b. So, if b < a, then b < S(a) and
so S(a) ∈ z. If a = b, then b < S(a), and so the result follows. Now if a < b, then b 6= ∅,
and so b = S(e) = e ∪ {e} for some e ∈ N. And so a < e ∪ {e}, which means a ∈ e ∪ {e},
so either a ∈ e or a ∈ {e}. If a ∈ {e}, then a = e, and so S(a) = S(e) = b. If a ∈ e, then
by the Lemma above, we have S(a) < S(e) = b. And so the result then follows.

Using the above definitions, we can then define addition on N as + : N × N → N, by
(m,n) 7→ +(m,n) = Sn(m). We will write it as the usual notation m+n. So, for instance,
1 + 1 = +(1, 1) = +({∅}, {∅}) = S{∅}({∅}) = S ◦ SP ({∅})({∅}) = S(SP (∅∪{∅})({∅})) =
S(S∅({∅})) = S(idN({∅})) = S({∅}) = {∅} ∪ {{∅}} = {∅, {∅}} = 2. Thus we have shown
from a purely set theoretic method 1+ 1 = 2. From the successor definition we can easily
see m + ∅ = S∅(m) = idN(m) = m for any m ∈ N. Similarly, we also see ∅ + m = m
(exercise). So ∅ = 0 is a neutral element under addition on N.

Example 4.5.

2 + 2 = +(2, 2) = +({∅, {∅}}, {∅, {∅}}) = S{∅,{∅}}({∅, {∅}})
= S ◦ SP ({∅,{∅}})({∅, {∅}})
= S(SP ({∅}∪{{∅}})({∅, {∅}}))
= S(S{∅}({∅, {∅}}))
= S(S ◦ SP ({∅})({∅, {∅}}))
= S(S(SP (∅∪{∅})({∅, {∅}})))
= S(S(S∅({∅, {∅}})))
= S(S(idN({∅, {∅}})))
= S(S({∅, {∅}}))
= S({∅, {∅}} ∪ {{∅, {∅}}})
= S({∅, {∅}, {∅, {∅}}})
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= {∅, {∅}, {∅, {∅}}} ∪ {{∅, {∅}, {∅, {∅}}}}
= {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
= 4

From this point forward, we will use the numbers we defined, i.e., 0, 1, 2, 3, . . ., instead of
∅, {∅}, . . ., for better readability and comprehension.

Using addition, we can also define multiplication on N as · : N × N → N, by a · b =
a + (a · P (b)) and a · 0 = 0. For example, 4 · 3 = 4 + (4 · 2) = 4 + (4 + (4 · 1)) =
4+(4+(4+(4 · 0))) = 4+(4+(4+(0))) = 4+(4+4) = 4+(S4(4)) = 4+8 = S4(8) = 12
(we leave the details of addition to the reader). This is well-defined. We can clearly see
that for any m, m ·1 = m+(m ·0) = m. So, 1 is the neutral element under multiplication.
But there are no multiplicative inverses, obviously.

We will now show associativity of addition, and we leave the rest of the following as an
exercise.

Proposition 4.6. For all a, b, c ∈ N, we have that addition is associative and commuta-
tive, i.e., a+ (b+ c) = (a+ b) + c, and a+ b = b+ a. We also have that multiplication is
associative and commutative, i.e., a · (b · c) = (a · b) · c and a · b = b · a. We also have the
distributive property, i.e., a · (b+ c) = (a · b) + (a · c).

Proof. We want to show z = {c ∈ N : a + (b + c) = (a + b) + c} ⊆ N for a, b ∈ N is
inductive. So, we have ∅ ∈ z, since a + (b + ∅) = a + S∅(b) = a + idN(b) = a + b, and
(a + b) + ∅ = S∅(a + b) = idN(a + b) = a + b, and the result follows. Now if c ∈ z, then
a+ (b+ c) = (a+ b) + c. We want to show a+ (b+ S(c)) = (a+ b) + S(c). So,

a+ (b+ S(c)) = a+ SS(c)(b) = a+ S(Sc(b)) = a+ S(b+ c)

= SS(b+c)(a) = S(Sb+c(a))

= S(a+ (b+ c))

= S((a+ b) + c), by assumption

= S(Sc(a+ b)) = SS(c)(a+ b)

= (a+ b) + S(c)

Thus completes the proof by induction.

We also define exponentials on N as N× N → N, by ab = aP (b) · a and a0 = 1.

Example 4.7.

22 = 2P (2) · 2
= 21 · 2 = (2P (1) · 2) · 2
= (20 · 2) · 2
= (1 · 2) · 2 = 2 · 2
= 2 + (2 · P (2)) = 2 + (2 · 1) = 2 + 2

= 4, from above example

The following is left as an exercise.
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Proposition 4.8. For all a, b, c ∈ N, we have ab+c = ab · ac, (ab)c = abc, and (a · b)c =
ac · bc.
One who is familiar with the Peano Axioms (see below), the non-set-theoretical method
of forming the natural numbers, can see that we have already proven that our constructed
set N satisfies all of the axioms.

Remark. Peano Arithmetic is a first-order axiomatic system, its language is the language
of arithmetic, where it is essentially the first-order logic (predicate logic) with the constant
0, the relations +, · and the predicate function S such that S(n) = n+1. The universe of
discourse in this language is N. The axioms are as follows.

(i) ∃0 ∈ N

there exists 0 in the natural numbers

(ii) ∀x : S(x) 6= 0
there is no natural number with 0 as its successor

(iii) ∀x, y : (S(x) = S(y)) ⇒ (x = y)

(iv) if n is a natural number, then S(n) is a natural number

(v) if we have a set y such that 0 is in y and for every natural number n, if n is in y
then S(n) is in y (i.e., it is inductive)

If we consider the union of (ZFC axioms without the infinity axiom) and (the negation
of the infinity axiom, i.e., there does not exist a set that is inductive), then this theory,
call it TZ, and the Peano Arithmetic theory, call it PA, are basically the same. That is
TZ proves any sentence if and only if PA proves the translation of that sentence (from
set theory to arithmetic). And PA proves any sentence if and only if TZ proves the
translation of that sentence (from arithmetic to set theory) ([25]).

4.I.I Brief on Cardinals

Here, we will define the notion of finite and countability. But we will not include any
proofs. The curious reader is directed to [12].

Given sets A and B. They are equinumerous if there exists a bijection from A to B. We
write |A| = |B| when A and B are equinumerous. Intuitively, we can think of this as
the size of the set, i.e., the number of elements. We call |A| the cardinality of A. We
say A has cardinality less than or equal to B if there exists an injection between A to B,
and write it as |A| ≤ |B|. Finally, if |A| ≤ |B|, but |A| 6= |B|, then |A| < |B|. We also
have the result that if |A| ≤ |B| and |B| ≤ |A| then |A| = |B|. This result is called the
Schroder-Bernstein theorem.

Recall that the number of elements in a natural number n is de facto n. So we say a set
A is finite, if there exists some natural number n such that |A| = n.

Is the set of natural numbers N infinite? Yes. We can first show that the cardinality for
any natural number n is not equal to any proper subset (i.e., a subset without equality) of
n. And so we can see a bijection from N to S(N), i.e., the successor of all natural numbers.
And clearly S(N) is not equal to N. Thus we have an infinite set.

If the sets A and B are disjoint then |A|+ |B| = |A∪B|. We can also define multiplication
on cardinals, i.e. |A| · |B| = |A×B|. These operations are well-defined (exercise).
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We say a set C is countable if |C| = |N|. We have that a subset of a countable set is
countable. We also have the union of a finite number of countable sets is countable. We
also have that the Cartesian product of a finite number of countable sets is countable.
We call ℵ0, pronounced as aleph-nought, the cardinal number of any countable set. So
ℵ0 = |N|.

4.I.II Axiom of Choice (AC) and its equivalences

Given that the relation ≤ is a weak total order on A. We say a chain in a partially ordered
set A is a totally ordered subset of A, i.e., B ⊆ A is a chain if ∀a, b ∈ B : (a ≤ b)∨ (b ≤ a).
And we say u ∈ A is an upper bound of chain B if for all a ∈ B we have a ≤ u.

Theorem 4.9. Working in ZFC, we have the following equivalences.

(i) The Axiom of Choice (Axiom 8)

(ii) Zorn’s Lemma: Let P be a partially ordered set. Suppose that every totally ordered
subset has an upper bound. Then the set P has a maximal element.

(iii) Well-Ordering Principle: Every set can be well-ordered.

(iv) Every vector space has a basis.

You can find the proof of the theorem in [12], [15], and [32].

4.II Construction of Z.

The natural numbers N do not contain any additive inverses. Non-set theoretically, one
might say that the natural numbers is a subset of non-negative integers. This however is
not a rigorous definition since you can define the negative integers as additive inverses of
the natural numbers.

In order to define the integers, we need to define a notion of subtraction. So we define a
relation R on N×N, by (m,n)R(p, q) :⇔ m+ q = p+ n. Intuitively, this means that each
pair represents subtraction, i.e., (m,n)R(p, q) meansm+q = p+n, which by manipulation
we get m− n = p− q. So (m,n) essentially represents m− n, where − is a symbol. This
relation R is an equivalence relation (exercise). So, (2, 1)R(3, 2), likewise (3, 2)R(4, 3). So,
we have the equivalence classes [(2, 1)] = [(3, 2)] = · · · = [(1, 0)].

Definition 4.10. The integer set Z is defined as the quotient set (N × N)/R. We
call a ∈ Z an integer. All integers are of the form n = [(n, 0)], or its additive inverse
−n = [(0, n)] for n ∈ N.

So, for example, [(0, 0)] = [(m,m)] for all m ∈ N. So 0 ∈ Z. We also have [(0, 1)] =
[(20, 21)] = [(m,m+ 1)] = −1. And [(0, 2)] = [(43, 45)] = [(m,m+ 2)] = −2, and so on.

At the start of the section when we gave a non-set theoretical definition of the integers
we claimed N ⊆ Z, since, intuitively, for all numbers m ∈ N, we have that it is also in Z.
However, by definition, they contain different elements, for example, 1N = {∅} ∈ N is not
the same as 1Z = [({∅}, ∅)] = [({{∅}}, {∅})] = · · · ∈ Z. So, N is not a subset of Z, however
it is embedded into Z with the inclusion map ι, given by ι : N →֒ Z, by n 7→ [(n, ∅)]. So
that the embedded N in Z is then a subset of Z.

We define addition on Z with a map +Z : Z × Z → Z given by [(m,n)] +Z [(p, q)] :=
[(m + p, n + q)], for any m,n, p, q ∈ N and where + is addition on N. This is well-
defined, since for any integers [(a, b)], [(c, d)], [(e, f)], [(g, h)] such that [(a, b)] = [(e, f)] and
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[(c, d)] = [(g, h)], then [(a, b)] +Z [(c, d)] = [(e, f)] +Z [(g, h)]. This is true because we have
a+ f = b+ e and c+ h = d+ g, so then by associativity and commutativity of +, we get
(a + c) + (f + h) = a + f + c + h = b + e + c + h = b + e + d + g = (b + d) + (e + g), so
then (a+ c, b+ d)R(e+ g, f + h) and the result follows.

Let us add m with its additive inverse, −m. So, m +Z (−m) = [(m, 0)] +Z [(0,m)] =
[(m,m)] = [(0, 0)] = 0. Clearly 0 = −0. So now we can define subtraction on Z as
m−Z n := m+Z (−n) for any m,n ∈ Z.

We define multiplication on Z by the map ·Z : Z × Z → Z, given by [(m,n)] ·Z [(p, q)] :=
[(m · p+ n · q,m · q+ n · p)], for any m,n, p, q ∈ N and where · is multiplication defined on
N. For example, 5 ·Z (−3) = [(5, 0)] ·Z [(0, 3)] = [(5 · 0+ 0 · 3, 5 · 3+ 0 · 0)] = [(0, 15)] = −15.
This is well-defined (exercise).

Clearly, for any integer m we have, 1 ·Z [(m, 0)] = [(1, 0)] ·Z [(m, 0)] = [(1 ·m+0 ·0, 1 ·0+0 ·
m)] = [(m, 0)] = m and similarly we see 1 ·Z [(0,m)] = −m. Also, 0 ·Z m = 0. Now given
any natural numbers m,n. We have −m ·Z −n = [(0,m)] ·Z [(0, n)] = [(m · n, 0)] = m ·Z n.
Also note that multiplication and addition are both commutative and associative on Z

(easy exercise).

We also define the relation < on Z (which we denote <Z for now), where given any integers
[(a, b)], [(c, d)], we say [(a, b)] <Z [(c, d)] if a+d < b+ c, where +, < are defined on N. This
is well-defined and the proof is analogous to how <Q is well-defined in the next section.
We call an integer a, positive if 0 <Z a, and negative if a <Z 0.

Note that it follows from section §4.I.I that the integers is a countable set. And so
|Z| = |N| = ℵ0.

An optional exercise to conclude this section would be to check that this indeed forms an
ordered ring. And from this, we can see that the structure of the embedded N into Z is
well preserved. So, just as in usual mathematics, we can regard N as the embedded N into
Z, so N ⊆ Z. And so when referring to the natural numbers and integers, we can use the
same symbols (for instance, instead of <Z and <, we can say <).

4.III Construction of Q.

We will now construct the rational numbers from the integers. The idea here is to define
the notion of division.

Definition 4.11. We first define a relation R on Z×Z \ {0}, given by (p, q)R(r, s) :⇔
p · s = q · r. Now we can define the rational numbers Q by the quotient set (Z × Z \
{0})/R. We call a ∈ Q, a rational number. We let the rational number [(a, b)] be
represented by a

b . For example, 5
7 = [(5, 7)] = [(10, 14)].

Similarly to N being embedded into Z, we also have Z embedded into Q with the inclusion
map ι : Z →֒ Q given by p 7→ [(p, 1)].

We now define the relation < on Q, and denote it only for now as <Q. For any rational
numbers [(a, b)] and [(c, d)], we say [(a, b)] <Q [(c, d)] if a · d < b · c. We see that this
is well defined since if we have rational numbers [(a, b)], [(c, d)], [(e, f)] and [(g, h)] such
that [(a, b)] = [(c, d)] and [(e, f)] = [(g, h)], then we have [(a, b)] <Q [(e, f)] if and only if
[(c, d)] <Q [(g, h)]. We will now show the only if part. The if part is left as an exercise.

Proof. This is clear since if [(a, b)] <Q [(e, f)], then we have a · f < b · e. And we already
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know a · d = b · c and e · h = f · g. So then (a · f) · (d · g) < (b · e) · (b · g). And also
(a · f) · (d · g) = (b · c) · (f · g) = (b · c) · (e · h). Finally, we get (b · e) · (c · h) < (b · e) · (d · g),
and so since < is well defined on Z and the embedded N in Z, we have c · h < d · g.

We can then also define addition and multiplication on Q, by the maps +Q : Q × Q →
Q given by [(p, q)] +Q [(r, s)] := [(p · s + r · q, q · s)], and ·Q : Q × Q → Q given by
[(p, q)] ·Q [(r, s)] := [(p · r, q · s)]. Both ·Q and +Q are well-defined. We will now show +Q

is well defined, and we leave ·Q to the reader as an easy exercise.

Proof. We need to show that for rational numbers [(a, b)], [(c, d)], [(g, h)], [(e, f)] such that
[(a, b)] = [(c, d)] and [(g, h)] = [(e, f)], then [(a, b)] +Q [(e, f)] = [(b, c)] +Q [(g, h)]. So we
need to show [((a · f) + (b · e), b · f)] = [((c · h) + (d · g), d · h)], i.e.,

(a · f) + (b · e) · (d · h) = (b · f) · ((c · h) + (d · g)).

Now [(a, b)] = [(c, d)] means a · d = b · c, and [(g, h)] = [(e, f)] means g · f = h · e. So, by
noting that + and · are commutative, associative and have distributive properties on Z

and the embedded N, we get

((a · f) + (b · e)) · (d · h) = (a · f) · (d · h) + (b · e) · (d · h)
= ((a · d) · f · h) + (b · d · (e · h))
= ((b · c) · f · h) + (b · d · (f · g)
= ((b · f) · (c · h)) + ((b · f) · (d · g))
= (b · f) · ((c · h) + (d · g))

And so the result follows.

Note that, similarly as before, we say that a rational number q is positive if 0 <Q q, and
negative if q <Q 0. And so if we have a rational number p = [(a, b)], then we can define its
negative −p as [(−a, b)] or [(a,−b)], and, as usual, we write it as −a

b instead of −a
b or a

−b .
So, we can now define subtraction on Q. Given any p, q ∈ Q, we have p−Q q = p+ (−q).
The last operation we need to define is division on Q. The map /Q : Q×Q \ {0} → Q is
given by p/Qq := p ·Q q−1 for any rational numbers p and q = [(a, b)], where q−1 is given
by [(b, a)].

Proposition 4.12. Multiplicative inverses of non-zero elements in Q exist.

Proof. Let p = [(a, b)] 6= 0. Then p ·Q p−1 = [(a, b)] ·Q [(b, a)] = [(a · b, b · a)]. And we can
see (a · b, b · a)R(1, 1), and so the result follows.

Note that it follows from section 4.I.I and that integers is a countable set, that the rationals
is also a countable set. So, |Q| = |Z| = |N| = ℵ0.

Similarly to the previous section, a nice exercise to conclude this section is to check that
this forms an ordered field. And from there, we see that the structure of Z is well preserved
as an ordered ring, and hence from now on, as usual, we regard Z as the embedded Z into
Q, so that Z ⊆ Q. And so we can likewise use the same symbols for N,Z, and Q.
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4.IV Construction of R.

Now since Q is not complete (see Example 5.40), in the sense that it does not contain any
“irrational number.” As an exercise, show x /∈ Q such that x ·Q x = 2, i.e.,

√
2 /∈ Q. We

need to “complete” the set. There are two well-known approaches to construct the real
numbers: Cantor’s construction via rational Cauchy sequences and Dedekind cuts on Q.
We will construct our real numbers via rational Cauchy sequences as this will help us see
things more clearly in the later chapters. We claim that the set R is the completion of
Q. Here completion essentially is the same as we will see in §5.IV, where a normed vector
space is said to be complete if every Cauchy sequence converges, and a complete normed
vector space V̂ is said to be a completion of a normed vector space V , if V is a dense
subset of V̂ .

So, we begin with defining the absolute value on Q by |x| as the map Q → Q≥0 given by

|x| :=
{

x if x ≥ 0,
−x if x < 0.

Q≥0 here just means for all x ∈ Q, x ≥ 0. Note that we have the triangle inequality
|a+ b| ≤ |a|+ |b|.
A sequence in Q is a map N → Q given by n 7→ an. We write (an) for the sequence
{a1, a2, . . .}. We say (an) → q (converges) if for all Q ∋ ǫ > 0, there exists N ∈ N, such
that for all n > N , we have |an − q| ≤ ǫ.

Definition 4.13. A Cauchy sequence on Q is a sequence (xn) such that for all Q ∋
ǫ > 0, there exists N ∈ N, such that |xm − xi| < ǫ for all m, i ≥ N .

It is easy to see that if (an) is a convergent sequence in Q, then it is Cauchy. It is left as
an exercise (see Proposition 5.35). The converse, however, is not true: if (an) is a Cauchy
sequence in Q, then it is not necessarily convergent. An example of this could be the
sequence

(

3

1
,
31

10
,
314

100
, . . . ,

314159

100000
, . . .

)

,

(which we know converges to π) which does not converge to any number in Q. Another
result that is useful, is that any Cauchy sequence is bounded, i.e., there exists M ∈ Q such
that |an| ≤M for all n (see Proposition 5.36).

And so now we define a relation R on the set of all Cauchy sequences in Q, which is
denoted as CQ, given by (an)R(bn) :⇔ (an − bn) → 0.

Let us show that this is in fact an equivalence relation.

Proof. For (an) ∈ CQ, we have (an)R(an) since |an − an| = 0, and so it is reflexive. It is
also symmetric, since for (an), (bn) ∈ CQ, we have if (an)R(bn), then |an − bn| → 0 and
so | − 1(bn − an)| = |bn − an| → 0, which means (bn)R(an). Finally, if we have (an)R(bn)
and (bn)R(cn) for (an), (bn), (cn) ∈ C, then |an − bn| → 0 and |bn − cn| → 0. And so, by
the triangle inequality, |an − cn| = |(an − bn) + (bn − cn)| ≤ |an − bn| + |bn − cn| → 0,
since for Q ∋ ǫ > 0, there exists N ∈ N such that for all n > N , |an− bn| < ǫ/2, and there
exists M ∈ N such that for all n >N M , |bn − cn| < ǫ/2; and by letting n > max(N,M),
then |an − cn| ≤ |an − bn| + |bn − cn| < ǫ/2 + ǫ/2 = ǫ. Hence, (an)R(cn), which shows
transitivity. And we are done.
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Definition 4.14. So, now we can define the set of real numbers R as [(an)] for all
(an) ∈ CQ. The equivalence class [(an)] is called a real number.

We define multiplication and addition on R, with maps +R : R×R → R given by [(an)]+R

[(bn)] := [(an + bn)], and ·R : R× R → R given by [(an)] ·R [(bn)] := [(an · bn)]. It is clear
that for any r ∈ R, we have r ·R 1 = r, and r ·R 0 = 0. There also exists inverses for any
r ∈ R \ {0}, i.e., there exists some r−1 ∈ R such that r ·R r−1 = 1.

These operations are well defined, we will only show that multiplication on R is well
defined, addition is left as an exercise. It is easy to see that these two operations are
associative, commutative and distributive (left as an exercise to show).

Proof. To show that it is well defined, we need to show that if [(an)] = [(cn)] and
[(bn)] = [(dn)], then [(an · bn)] = [(cn · dn)]. So, let [(an)] = [(cn)] and [(bn)] = [(dn)],
for (an), (bn), (cn), (dn) ∈ CQ. Since they are Cauchy sequences, we know that they are
bounded, so let A,B ∈ Q such that |bn| ≤ B and |cn| ≤ C for all n ∈ N. Now, let
A = B +C. Then we have (an − cn) → 0 and (bn − dn) → 0, i.e., for any Q ∋ ǫ > 0 there
exists N,M ∈ N such that for all n > N , we have |an − cn| < ǫ/C and for all n > M , we
have |bn − dn| < ǫ/C. Now we have |an · bn − cn · dn| = |bn · (an − cn) + cn · (bn − dn)| ≤
|bn| · |an − cn|+ |cn| · |bn − dn| < Bǫ

A + Cǫ
A = ǫ. And so (an) · bn − cn · dn → 0, which means

[(an · bn)] = [(cn · dn)]. And we are done.

We also define the relation < on R (denoted as <R for now). Given real numbers
[(an)], [(bn)], we say [(an)] <R [(bn)] to mean that there exists Q ∋ ǫ > 0 and N ∈ N

such that an ≤ bn − ǫ for all n ≥ N . One can show that this relation is not reflexive (i.e.,
for all [(an)] ∈ R, [(an)] 6<R [(an)]), transitive (i.e., for all [(an)], [(bn)], [(cn)] ∈ R, if we
have [(an)] <R [(bn)] and [(bn)] <R [(cn)], then [(an)] <R [(cn)]) and linear (i.e., for all
[(an)], [(bn)] ∈ R, either [(an)] <R [(bn)] or [(an)] = [(bn)] or [(bn)] <R [(an)]).

Q is embedded in R with the inclusion map ι : Q →֒ R given by x 7→ [(x, x, x, . . .)].

The next result tells us Q is dense in R.

Lemma 4.15. For all x ∈ R and Q ∋ ǫ > 0, there exists a ∈ Q such that |x− a| < ǫ.

Proof. Let R ∋ x = [(xi)] for (xi) ∈ CQ for all i. So then, for any Q ∋ ǫ > 0, there exists
N ∈ N such that for all m,n > N , we have |xn − xm| < ǫ. Now there exists a ∈ Q,
and k > N , so then we can define a := [(xk, xk, . . .)]. And so x − a = [(xi)] − [(xk)] =
[(xi − xk)] < ǫ. Also, a− x = [(xk)]− [(xi)] = [(xk − xi)] < ǫ. So, then |x− a| < ǫ.

A nice remark is that, |[(xn)]| := [(|xn|)].
The set of real numbers R is uncountable ([12]). What is the cardinality of R? Cantor’s
theorem states P(N) is an uncountable set. And from this we see |P(N)| = |2N|, where
2N is the set of all functions on N into 2. So a general corollary to this is |P(X)| = |2X |
for any set X. And, since the real numbers is a subset of the Cartesian product of the
power set of the rational numbers, then |P(Q)×P(Q)| = 2ℵ0 . And thus, we can conclude
|R| = 2ℵ0 .

So, we can now conclude this section by saying R forms an ordered field (exercise). And
so considering the embedded Q into R, we have Q ⊆ R. So we can essentially replace
any symbol from Q to R. And we can show R is complete, by showing that any Cauchy
sequence of real numbers converges to a real number (see Proposition 5.41).
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4.V Construction of C.

We can define C as the ordered pair (a, b) of R× R, where (a, b) := a+ bi. Addition and
multiplication are the maps +C, ·C : C × C → C given by (a, b) +C (c, d) := (a + c, b + d)
and (a, b) ·C (c, d) := (a · c − b · d, b · c + a · d). We can then define the conjugate as z̄ :=
(a,−b) = a− bi, where z := (a, b) = a+ bi. We see i2 = i · i = (0, 1) · (0, 1) = (−1, 0) = −1.

This completes the first part (Logic & the Foundations of Mathematics) of this essay.

5 Normed Spaces

In this chapter we will learn the basics of normed vector spaces, metric spaces and toplog-
ical spaces. Readers who are not comfortable with convergence and continuity in metric
and topological spaces should find this easy to follow.

This chapter is based on the presentations of [1], [4], [22], [24], [27], [28], [33], [38], [40],
and [45].

We let F denote R or C throughout this essay.

5.I Norms, Metrics and Topology

To do analysis on a vector space we need to introduce the concept of a normed vector
space. In this section, we will see how any normed vector space is a metric space, which
is a topological space.

Definition 5.1. Let V be a F-vector space. A norm on V is a function ‖ · ‖ : V → R

such that

(i) ‖v‖ ≥ 0 for all v ∈ V with equality if and only if v = 0

(ii) ‖λv‖ = |λ|‖v‖ for all λ ∈ F and v ∈ V

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V

V equipped with a norm, (V, ‖ · ‖), is called a normed vector space.

Remark. If V is a normed vector space and W is a vector subspace of V , then W is also
a normed vector space.

Example 5.2. For all x ∈ R, we have the norm ‖x‖ = |x| =
{

x if x ≥ 0,
−x if x ≤ 0

.

And for z ∈ C, we have the norm ‖z‖ = |z| = |x+ iy| =
√

x2 + y2.

A norm on a vector space is essentially thought of as the size of an element in the space.

Now let X be a set. A metric on X is the function d : X × X → R such that for all
x, y, z ∈ X, we have

(i) d(x, y) ≥ 0 with equality if and only if x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, z) ≤ d(x, y) + d(y, z)

A set equipped with a metric is called a metric space.
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Turns out that all normed spaces are metric spaces.

Proposition 5.3. A norm induces a metric on a F-vector space V ,
i.e., d(v, w) = ‖v − w‖ for any v, w ∈ V .

Proof. By definition we have d(v, w) = ‖v −w‖ ≥ 0 with equality if and only if v = w for
any v, w ∈ V . We also have d(v, w) = ‖(−1)(w − v)‖ = | − 1|‖w − v‖ = d(w, v) for any
v, w ∈ V . Finally, for any u, v, w ∈ V , we have d(u, v) + d(v, w) = ‖u − v‖ + ‖v − w‖ ≥
‖u− w‖ = d(u,w).

Given a metric d on a F-vector space X. Let ‖x‖ = d(x, 0) for x ∈ X. This defines a norm
on the metric space X if and only if we have that the metric is translation-invariant (i.e.,
d(x, y) = d(x+ z, y+ z) for x, y, z ∈ X) and dilation-invariant (i.e., d(λx, λy) = |λ|d(x, y)
for all x, y ∈ X and λ ∈ F). This is left as an exercise.

A topology τ on a set X is a collection of subsets on X such that

(i) ∅, X ∈ τ

(ii) if Uγ ∈ τ for γ ∈ Γ, then
⋃

γ∈Γ Uγ ∈ τ

(iii) if U1, . . . , Un ∈ τ , then
⋂n

i=1 Ui ∈ τ .

The elements of τ are called open sets in the topology. A set equipped with a topology is
a topological space.

Every metric space is a topological space. We can define the topology on the metric space
X by first defining an open ball, then defining the open sets with Definition 5.5.

Since every normed space is a metric space, we will use normed spaces for our definition
of an open ball by replacing the induced metric with the norm (i.e., d(x, y) = ‖x− y‖).

Definition 5.4. Let v ∈ V and r > 0. The open ball B(v, r) is {w ∈ V : ‖v−w‖ < r}.

Definition 5.5. A subset U ⊆ V is open if for all u ∈ U , there exists r > 0 such that
B(u, r) ⊆ U .

Proposition 5.6. Let V be a normed vector space. Then

(i) V and ∅ are open in V

(ii) if Ui ⊆ V is open for all i, then
⋃

i Ui is open

(iii) if U1, . . . , Un are open in V , then
⋂n

i=1 Ui is open.

Proof.

(i) It is clear V is open in V , by definition.
Suppose ∅ is not open. So, there exists v ∈ ∅ such that B(v, r) 6⊆ ∅. This is a
contradiction since no such v can exist. Thus ∅ is open in V .

(ii) Let Ui be open subsets in V for all i. And let v ∈ ⋃Ui. Then we have v ∈ Ui for
some i. So there exists r > 0 such that B(v, r) ⊆ Ui ⊆

⋃

i Ui. So,
⋃

i Ui is open.

(iii) Let Ui = U1 ∩ U2 ∩ · · · ∩ Un be a collection of open sets in V . And let v ∈ Ui for
every i. So, for each i, there exists ǫi > 0 such that B(v, ǫi) ⊆ Ui. Now let ǫ be the
minimum of ǫi. Then, for each i, we have 0 < ǫ ≤ ǫi, so then B(v, ǫ) ⊆ B(ǫi) ⊆ Ui.
Thus Ui is open.
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So, we can conclude that every normed space is also a topological space. And so any
results in metric and topological spaces are also applied to normed spaces.

Proposition 5.7. Let V be a normed vector space. Let v, w ∈ V , then |‖v‖ − ‖w‖| ≤
‖v − w‖.

Proof. We have ‖v‖ = ‖v − w + w‖ = ‖(v − w) + w‖ ≤ ‖v − w‖+ ‖w‖ by definition. So,
‖v‖ − ‖w‖ ≤ ‖v − w‖. We also have, ‖w‖ = ‖(w − v) + v‖ ≤ ‖w − v‖ + ‖v‖. And so
‖w‖ − ‖v‖ ≤ ‖(−1)(v − w)‖ = ‖v − w‖. Therefore, we have |‖v‖ − ‖w‖| ≤ ‖v − w‖.

We can show that the open ball is, indeed, an open set.

Proposition 5.8. The open ball in space V is an open subset.

Proof. Let u ∈ B(v, t). Then ‖u − v‖ < t. Now let r = t − ‖u − v‖ so r > 0. Also
let w ∈ B(v, r). Then we have ‖u − w‖ < r. And so ‖v − w‖ ≤ ‖v − u‖ + ‖u − w‖ <
‖v− u‖+ r = t. So then w ∈ B(v, t). And so then B(u, r) ⊆ B(v, t), which means B(v, t)
is an open subset.

The following result is known as the Minkowski inequality . Given (ak) ∈ Rn, define
‖ak‖p = (

∑n
k=1 |ak|p)1/p.

Proposition 5.9. If p > 1 and ak, bk > 0 then,

(

n
∑

k=1

|ak + bk|p
)

1

p

≤
(

n
∑

k=1

|ak|p
)

1

p

+

(

n
∑

k=1

|bk|p
)

1

p

,

which can be rewritten as ‖ak + bk‖p ≤ ‖ak‖p + ‖bk‖p.

Proof. We need two results in order to prove this, namely, Young’s inequality, and Holder’s
inequality.

We begin with the following result, called, young’s inequality .

Lemma 5.10. If p, q > 1 such that 1/p+ 1/q = 1 and x, y ≤ 0, then

xy ≤ xp

p
+
yq

q
.

Proof (idea). Assume x, y > 0 otherwise if x or y is 0 then we have that the

inequality is trivial. So we first let the real-valued function f(a) =
ap

p
+1/q−a,

so that the stationary point (f ′(a) = 0) is, then, a = 1. And this is a minimum
(f ′′(a) ≥ 0), so the function is increasing, i.e., f(a) ≥ f(1) = 0. So, we have

a ≤ ap

p
+ 1/q. And, now let a = xy1/(1−p). And so,

xy1/(1−p) ≤ xpyp/(1−p)

p
+ 1/q.

Now, multiply both sides by y−p/(1−p), and the result then follows.
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We also use the following result, called Holder’s inequality .

Lemma 5.11. If p, q > 1 such that 1/p+ 1/q = 1, and ak, bk ∈ Rn,

n
∑

i=1

|ak||bk| ≤
(

n
∑

i=1

|ak|p
)1/p( n

∑

i=1

|bk|q
)1/q

,

which can be rewritten as, ‖akbk‖1 ≤ ‖ak‖p‖bk‖p.
Proof. Let ak, bk > 0, otherwise it is trivial. Now let xk = |ak|(

∑n
k=1 |ak|p)−1/p

and yk = |bk|(
∑n

k=1 |bk|q)−1/q. And so by Young’s inequality, we get xkyk ≤
xk

p/p+ yk
q/q for each k. So, now we have

∑n
k=1 xk

p = 1 and
∑n

k=1 yk
q = 1.

So then,
∑n

k=1 xkyk ≤ 1/p + 1/q = 1. And,
∑n

k=1 xkyk = ‖xkyk‖1 ≤ 1.
Finally, ‖akbk‖1 ≤ ‖ak‖p‖bk‖q.

Now, we can prove this. We have

|ak + bk|p = |ak + bk|p−1|ak + bk| ≤ |ak + bk|p−1(|ak|+ |bk|)
= |ak + bk|p−1|ak|+ |ak + bk|p−1|bk|

Now, let p− 1 = p/q, where q > 1. And so, we have

‖ak + bk‖pp =

n
∑

k=1

|ak − bk|p

≤
n
∑

k=1

|ak||ak + bk|p/q +
n
∑

k=1

|bk||ak + bk|p/q

And so by Holder’s inequality, we have ‖ak + bk‖pp ≤ ‖|ak + bk|p/q‖q(‖ak‖p + ‖bk‖p). And
so, then

‖|ak + bk|p/q‖q =

(

n
∑

k=1

(|ak + bk|p/q)q
)1/q

=

(

n
∑

k=1

|ak + bk|p
)1/q

= ‖ak + bk‖p/qp

Finally, we have ‖ak + bk‖ ≤ ‖ak + bk‖p/qp (‖ak‖p + ‖bk‖p), and since p− p/q = 1, we have

‖ak + bk‖p−p/q
p = ‖ak + bk‖p ≤ ‖ak‖p + ‖bk‖p.

Example 5.12. Let p ≥ 1, then Rn has a norm ‖(x1, . . . , xn)‖p = (|x1|p + · · · +
|xn|p)

1

p .

We check the axioms,

(i) if v ∈ Rn and ‖v‖p = 0, then (|v1|p+· · ·+|vn|p) 1p = 0 and so |v1|p+· · ·+|vn|p = 0,

since |vi| ≥ 0 for all i, v1 = · · · = vn = 0 so v = 0

(ii) if v ∈ Rn and λ ∈ F, then ‖λv‖p = (|λv1|p + · · ·+ |λvn|p)
1

p = (|λ|p(|v1|p + · · ·+
|vn|p)

1

p = |λ|‖v‖p
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(iii) if v, w ∈ Rn, then by using the Minkowski inequality,

‖v + w‖p = (|v1 + w1|p + · · ·+ |vn + wn|p)
1

p

≤ (|v1|p + · · ·+ |vn|p)
1

p + (|w1|p + · · ·+ |wn|p)
1

p = ‖v‖p + ‖w‖p

Example 5.13. Let l∞ = {(an) : ai ∈ F, (an) is bounded}, then it has a norm
‖(an)‖∞ = sup{|an| : n ∈ N}.
We check the axioms:

(i) if (an) ∈ l∞ and ‖(an)‖∞ = 0, then sup{|an| : n ∈ N} = 0 and so (an) = 0 for
all n, so (an) = 0

(ii) if (an) ∈ l∞ and λ ∈ F, then
‖λ(an)‖∞ = sup{|λ(an)| : n ∈ N} = sup{|λ||(an)| : n ∈ N} = |λ|‖(an)‖∞

(iii) if (an), (bn) ∈ l∞, then

‖(an) + (bn)‖∞ = sup{an + bn : n ∈ N}
≤ sup{|an|+ |bn| : n ∈ N}
≤ sup{|an| : n ∈ N}+ sup{|bn| : n ∈ N} = ‖(an)‖∞ + ‖(bn)‖∞

5.II Convergence

Now we will discuss convergence of sequences in normed spaces.

Definition 5.14. Let (vn) be a sequence in the normed vector space V , and v ∈ V .
We say (vn) converges to v if for all ǫ > 0 there exists N ∈ N such that n ≥ N implies
‖vn − v‖ < ǫ. We say vn → v as n→ ∞ in norm.

Remark. We say (vn) converges in norm to a limit v ∈ V if and only if limn→∞ ‖vn−v‖ = 0.

Definition 5.15. Let S ⊆ V . We say S is closed if, when (vn) is a sequence in S which
converges to a limit v ∈ V , we have v ∈ S.

Example 5.16. [0, 1] is closed, but [0, 1) is not. (0, 1) is open. (−∞, 0] ∪ [1,∞) is
closed.

Remark. Note that subsets may be any of the following: open and not closed (such as
(0, 1) ⊆ R), closed and not open ([0, 1] ⊆ R), neither open nor closed ([0, 1) ⊆ R), and
both open and closed (R ⊆ R).

Definition 5.17. Let S ⊆ V . The closure of S is S̄, and is the set of all elements
v ∈ V that are norm limits of S.

Corollary 5.18. If S ⊆ V , we have S is closed if S̄ = S. If V is closed, then S̄ ⊆ V .

Proposition 5.19. Let A ⊆ V . A is open if and only if the complement V \A is closed.

Proof.

(⇒) Let A be open in V . We want to show that for any sequence (vn) in V \ A, such
that (vn) → v, then v ∈ V \A. So let (vn) ∈ V \A converge to v. And suppose
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v ∈ A. So, then, there exists r > 0 such that B(v, r) ⊆ A by definition of openness.
Now, since vn → v, then there exists vn ∈ B(v, r). But, then vn ∈ A. This is a
contradiction since v ∈ V \A by assumption. Hence, v /∈ A, so v ∈ V \A. Hence
V \A is closed since it contains its limit points.

(⇐) Now let V \ A be closed. Suppose A is closed. So there exists a ∈ A such that
B(a, r) ⊆ A, which means B(a, r) ∩ (V \ A) 6= ∅, for all r > 0. Hence, for each
n ∈ N, there exists vn ∈ B(a, 1/n) with vn /∈ A, by definition of closedness. And
since ‖a−vn‖ < 1/n, then |−1|‖vn−a‖ < 1/n, and so vn → a. But, then a ∈ V \A
since V \ A is closed. This is a contradiction since we assumed a ∈ A. Thus, A is
open.

Definition 5.20. Let V be a normed vector space and K ⊆ V . K is compact if for any
sequence (vn) in K, we have a subsequence (vnk

) such that (vnk
) converges in norm to

some v ∈ K.

Example 5.21. In [0, 1], consider the sequence

1

2
, 1,

1

3
, 0,

1

4
, 1,

1

5
, 0, . . . .

This sequence does not converge. But, 1
2 ,

1
3 ,

1
4 , . . . does converge. 1

2 , 0,
1
3 , 0,

1
4 , 0, . . .

also converges.

Proposition 5.22. Let (vn) be a sequence in V such that vn → v ∈ V . Then any
subsequence (vnk

) of (vn) also converges to v.

Proof. Let (vnk
) be any subsequence of (vn) ∈ V and vn → v ∈ V . Then for any ǫ > 0

there exists N ∈ N such that for n > N , ‖vn − v‖ < ǫ. Let K ∈ N such that nK > N .
And if k > K, then nk > nK > N , and so ‖vnk

− v‖ < ǫ.

Definition 5.23. B ⊆ V is bounded if there exists c such that ‖v‖ ≤ c for all v ∈ B.

The following result is known as the Bolzano-Weierstrass theorem.

Theorem 5.24. Every sequence in R that is bounded has a converging subsequence.

Proof (idea). We give a sketch of the proof, which can be found in any Real Analysis
textbook, such as [39], [40], and [41].

Definition. A monotone sequence is a sequence where all the terms are in-
creasing or decreasing.

The next step is to show the following.
Lemma. Every real sequence has a monotone subsequence.

The proof of this is left as an exercise for the reader.

Then we come to our main point.
Lemma. If a real sequence is monotone and bounded, then it converges.
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The idea of the proof is by first seeing what happens when the monotone
sequence is increasing, and then decreasing. You can see that when it is in-
creasing, the sequence is converging to the supremum of the sequence, while
when it is decreasing, it is converging to the infimum of the sequence.

It then follows from the above statements, that indeed if a real sequence is bounded, then
it has a monotone subsequence, which is also bounded, and thus is convergent.

The following is a corollary to Bolzano-Weirstrass, which can be shown using induction
(left as an exercise).

Corollary 5.25. Every sequence in Rn that is bounded for some n, has a converging
subsequence.

Lemma 5.26. Norm limits are unique, i.e., for a sequence (vn) in a normed vector space
V such that vn → v and vn → v′, then v = v′.

Proof. Since vn converges to both v and v′, we have that for any ǫ > 0, there exists
some N ∈ N such that ‖vn − v‖ ≤ ǫ/2 if n > N ; and there exists some N ′ such that
‖vn − v′‖ < ǫ/2 if n > N ′. So we have that if n > max(N,N ′) we get 0 ≤ ‖v − v′‖ ≤
‖v− vn‖+ ‖vn − v′‖ ≤ ǫ. So then 0 ≤ ‖v− v′‖ ≤ ǫ for all ǫ > 0, and so ‖v− v′‖ = 0 which
implies v = v′.

The following result is known as Heine-Borel theorem.

Theorem 5.27. Let V be a finite-dimensional normed vector space and K ⊆ V . K is
compact if and only if it is closed and bounded.

Proof.

(⇒) Let K be compact. We first want to show that if vn ∈ K and vn → v, then v ∈ K,
i.e., K is closed. So suppose vn → v ∈ K for a sequence (vn) ∈ K. So, then, by
definition of compactness, there exists vnk

→ v′ ∈ K. Then we also have vnk
→ v

since (vnk
) is a subsequence of (vn). And so, by the above lemma, we have v = v′.

Thus, K is closed.
Now, suppose K is not bounded. Then there exists (vn) ∈ K such that for all c we
have ‖vn‖ > c. But, then no subseqeunce of (vn) is bounded and so none would
converge to some element in K. This is a contradiction since K is compact by
assumption. Hence K is bounded.

(⇐) Now, let K be bounded and closed. Let (vn) ∈ K. Since K is bounded, then there
exists c such that ‖wn‖ ≤ c. And by Bolzano-Weirstrass, (vn) has a subsequence
(vnk

) that converges to some v. And since K is closed, any sequence in K will
contain its limit points, and thus v ∈ K. Hence, K is compact.

5.III Continuity

Now we will talk about the important notion of continuity of functions between normed
spaces.

Definition 5.28. Let V,W be normed vector space, X ⊆ V and Y ⊆W . The function
f : X → Y is continuous if for all x0 ∈ X, ǫ > 0 there exists δ > 0 such that ‖x−x0‖ < δ
implies ‖f(x)− f(x0)‖ < ǫ.
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Proposition 5.29. Given a function between normed spaces f : V → W , and v ∈ V .
Then the definition of continuity above is equivalent to saying that, for sequences (vn) ∈ V
such that vn → v, then we have f(vn) → f(v) ∈W .

Proof.

(⇒) Suppose f is continuous at v ∈ V . Now let (vn) ∈ V such that vn → v. We want
to show that for any ǫ > 0 there exists N ∈ N such that for all n > N , we have
‖f(vn) − f(v)‖ < ǫ. Now, let ǫ > 0 there exists δ > 0 such that for all w ∈ V such
that ‖w − v‖ < δ implies ‖f(w) − f(v)‖ < ǫ. And so there exists N ∈ N such that
for all n > N , we have ‖vn − v‖ < δ. Which means ‖f(vn) − f(v)‖ < ǫ. Hence,
f(vn) → f(v).

(⇐) Now suppose f is not continuous at v. Then there exists ǫ > 0 such that for all δ > 0
there exists w ∈ V such that ‖w− v‖ < δ and ‖f(w)− f(v)‖ ≥ ǫ. Let δ = 1/n, then
there exists some (vn) ∈ V such that ‖vn − v‖ < 1/n and ‖f(vn)− f(v)‖ ≥ ǫ. This
is a contradiction to our assumption since vn → v but f(vn) 6→ f(v).

The following result shows us that to talk about continuity, we can forget about metrics
and norms and use open and closed sets.

Lemma 5.30. Given a function between normed spaces f : X → Y . We have the following
equivalence.

(i) f is continuous

(ii) for every closed U ⊆ Y , the preimage f−1(U) = {x ∈ X : f(x) ∈ U} ⊆ X is closed

(iii) for every open U ⊆ Y , the preimage f−1(U) ⊆ X is open

Proof.

(i) ⇒ (ii) Let f : X → Y be continuous and let U ⊆ Y be closed. We want to show
that for any (xn) ∈ f−1(U) such that xn → x, then x ∈ f−1(U). So let (xn) be
a sequence in f−1(U) such that xn → x, so then we have f(xn) → f(x). Since
xn ∈ f−1(U), we have f(xn) ∈ U . And so f(x) ∈ U and x ∈ f−1(U). Hence f−1(U)
is closed.

(ii) ⇒ (iii) Now let U ⊆ Y be open. Then the complement Y \U is closed. So f−1(Y \U)
is closed by (ii). Now let x ∈ f−1(Y \ U , so f(x) ∈ Y \ U , which means f(x) /∈ U ,
and so we have x ∈ X \ f−1(U); thus f−1(Y \U) = X \ f−1(U) and so X \ f−1(U)
is closed, hence f−1(U) is open in X.

(iii) ⇒ (i) Finally, let x ∈ X and r > 0. Now we have f(x) ∈ B(f(x), r) ⊆ Y ,
so x ∈ f−1(B(f(x), r)) is open. Therefore for some δ > 0, we have B(x, δ) ⊆
f−1(B(f(x), r)). Thus f is continuous since f(B(x, δ)) ⊆ B(f(x), r).

Proposition 5.31. Given two continuous functions f : U → V and g : V → W between
normed spaces. Then we have that the function g ◦ f : U →W is also continuous.
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Proof. Let U ⊆ W be an open subset. We want to show (g ◦ f)−1(U) is open. We first
want to show (g ◦ f)−1(U) = f−1(g−1(U)).
If x ∈ (g ◦ f)−1(U), then we have g(f(x)) = (g ◦ f)(x) ∈ U . And so f(x) ∈ g−1(U), and
then we have x ∈ f−1(g−1(U)). And for the converse, if x ∈ f−1(g−1(U)), then we have
f(x) ∈ g−1(U), and so g(f(x)) = (g ◦ f)(x) ∈ U . Finally, we have x ∈ (g ◦ f)−1(U). Thus,
(g ◦ f)−1(U) = f−1(g−1(U)).
By the above, since g is continuous, we have g−1(U) ⊆ V is open. Similarly, since f is
continuous, we have f−1(g−1(U)) ⊆ U is also open. Thus, g◦f : U →W is continuous.

Lemma 5.32. Let f : X → Y be continuous and K ⊆ X be compact. Then f(K) =
{f(x) : x ∈ K} is also compact.

Proof. Let (yn) be any sequence in f(K). Then for each n, there exists xn ∈ K such that
f(xn) = yn. Since K is compact, there exists a subsequence (xnk

) such that it converges
to x ∈ K. Since f is continuous, we have ynk

= f(xnk
) converges to f(x) ∈ f(K). So

f(K) is compact since (yn) has a subsequence converging to some point in f(K).

Theorem 5.33. Let K ⊆ V be compact and f : K → F be continuous. Then f is bounded.

Proof. By the above lemma, f(K) is compact. And by Heine-Borel theorem, we know
that any compact set is bounded.

5.IV Cauchy, complete spaces and Banach spaces

In this section, we will learn about completeness (Banach spaces are complete normed
spaces), and completions. We will conclude the chapter with the fact that any normed
vector space has a completion. We will prove this properly in the next chapter with
dual spaces. However, we state that we can find completions, in a constructive method,
similarly to the way we constructed the real numbers in §4.

Recall the definition of a Cauchy sequence on Q from before (Definition 4.13). But, we
rewrite it so that we can use the norm limit instead.

Definition 5.34. Let (vn) be a sequence in a normed vector space V . Then (vn) is
Cauchy if for all R ∋ ǫ > 0 there existsN ∈ N such thatm,n ≥ N implies ‖vm−vn‖ < ǫ.

Proposition 5.35. If (vn) is a norm convergent sequence in a normed vector space V ,
then (vn) is a Cauchy sequence. (i.e., every convergent sequence is Cauchy.)

Proof. Let v be the limit of (vn), and ǫ > 0. There exists N ∈ N such that if n ≥ N , then
‖vn−v‖ < ǫ/2. So ifm,n ≥ N , then ‖vm−vn‖ = ‖vm−v+v−vn‖ ≤ ‖vm−v‖+‖v−vn‖ =
‖vm − v‖+ ‖vn − v‖ < ǫ.

Proposition 5.36. A Cauchy sequence is bounded.

Proof. By definition, there is some N such that for all n ≥ N , we have ‖xN − xn‖ < 1.
So, ‖xn‖ < 1+‖xN‖ for n ≥ N . So, for all n, we have ‖xn‖ ≤ max{‖x1‖, . . . , ‖xN−1‖, 1+
‖xN‖}.

Proposition 5.37. Let (vn) be a Cauchy sequence in V . If (vn) has a subsequence vnk
→

v, then (vn) also converges to v.
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Proof. Let ǫ > 0. Since (vn) is Cauchy, there exists N such that ‖vn − vm‖ < ǫ/2 for all
n,m > N . Since vnk

→ v, there exists K such that ‖vnk
‖ < ǫ/2 for all k > K. Choose

M ∈ Z such that M > N and M > K and let m = nM . Then m ≥ M > N . Now let
n > m, then n,m > N so ‖vn − vm‖ < ǫ/2. But we have vm = vnM

is in the subsequence
andM > K so ‖vm−v‖ < ǫ/2. Hence ‖vn−v‖ ≤ ‖vn−vm‖+‖vm−v‖ < ǫ/2+ǫ/2 = ǫ.

Definition 5.38. A normed vector space V is complete if every Cauchy sequence
converges. A complete normed vector space is a Banach space.

Example 5.39. Any finite dimensional normed vector space is a Banach space.
lp is a Banach space.

Vector space C[−1, 1] defined by ‖f‖ =
∫ 1

−1
|f(x)| dx, where f ∈ C[−1, 1], is not a

Banach space. But, it is a Banach space with ‖f‖ = sup{|f(x)| : x ∈ [−1, 1]}.

Example 5.40. Q is not complete since the sequence

1

1
,
14

10
,
141

100
, . . .

in Q has its limit as
√
2 /∈ Q, but it is Cauchy since

√
2 ∈ R.

Proposition 5.41. R is a Banach space.

Proof. We want to show that every real Cauchy sequence is convergent. Let (vn) ∈ R

be a Cauchy sequence. From above results, we know (vn) is bounded. And from the
previous section, we saw the Bolzano-Weirstrass theorem, which says any bounded real
sequence has a converging subsequence. So let (vnk) be a subsequence of (vn), such that
vnk → v ∈ R. By the above proposition, we see vn → v.

Corollary 5.42. C is a Banach space.

Definition 5.43. The subset W ⊆ V is dense if W̄ = V .

The following result shows that our previous definition of dense from Lemma 4.15 is
equivalent to the one above.

Proposition 5.44. Given a normed vector space V , and U ⊆ V , then the following are
equivalent.

(i) for all v ∈ V and ǫ > 0, there exists u ∈ U , such that ‖u− v‖ < ǫ

(ii) Ū = V

Proof.

(i) ⇒ (ii) Let v ∈ V \ U , so that for some r > 0, there exists an open ball B(v, r) that
contains some vn ∈ U . So, then ‖vn − v‖ < ǫ, i.e., vn → v. And so v ∈ Ū . So we
now have V \ U ⊆ Ū . So, V ⊆ Ū . And we know Ū ⊆ V , therefore V = Ū .

(ii) ⇒ (i) Now let v ∈ V \ U . So, then v ∈ Ū \ U , and there exists (vn) ∈ U such that
vn → v. And so for all ǫ > 0, there exists N ∈ N such that ‖vn − v‖ < ǫ.
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Definition 5.45. A Banach space V̂ is a completion of V , if V is a dense subset of V̂ .

Following Lemma 4.15, we saw Q is dense in R, where Q is embedded into R with the
inclusion map ι : Q →֒ R given by x 7→ [(x, x, x, . . .)]. The method of completion we did in
§4 gives us an idea of how to prove the following theorem. One way is applying a similar
method to constructing the real numbers from the rationals. We can generalise such by
saying that the completion of any normed space is the set of equivalence classes of Cauchy
sequences in the normed space.

Theorem 5.46. Any normed vector space V has a completion V̂ .

We will prove this theorem (via dual spaces) at the end of the next chapter.

6 Spaces of Bounded Linear Maps

In this chapter we will learn about bounded linear maps; the Hahn-Banach theorems
(proof omitted); and dual spaces. We will conclude the chapter with the fact that any
normed vector space has a completion. We prove this with dual spaces.

This is based on the presentations of [1], [4], [27], [28], [38], and [40].

6.I Bounded linear maps

In this section we will learn about bounded, equivalently continuous (see below), linear
maps between normed vector spaces.

Definition 6.1. Let U, V be F-vector spaces. Then T : U → V is a linear map if

(i) T (u+ v) = T (u) + T (v) for all u, v ∈ U

(ii) T (λu) = λT (u) for all λ ∈ F and u ∈ U .

Remark. We can instead say that T is a linear map if T (λu+ µv) = λT (u) + µT (v).

Definition 6.2. Let V,W be normed vector spaces. The linear map T : V → W is a
bounded if there exists C > 0 such that ‖Tv‖ ≤ C‖v‖ for all v ∈ V .

Theorem 6.3. Let V,W be normed vector spaces, and T : V → W a linear map. Then
the following are equivalent.

(i) T is continuous

(ii) T is continuous at 0

(iii) T is bounded

Proof.

(i) ⇒ (ii) By definition.

(ii) ⇒ (iii) Let ǫ = 1, there exists δ > 0 such that ‖v − 0‖ = ‖v‖ < δ implies ‖Tv − 0‖ =
‖Tv‖ < 1. If v = 0, then ‖Tv‖ = 0 ≤ C‖v‖. Now let v ∈ V \ {0}, then

∥

∥

∥

∥

T

(

δv

2‖v‖

)
∥

∥

∥

∥

=

∥

∥

∥

∥

δ

2‖v‖

∥

∥

∥

∥

‖Tv‖ =
δ

2‖v‖‖Tv‖ < 1

and so ‖Tv‖ < 2

δ
‖v‖. So if we let C = 2/δ, then T is bounded.



6.II Dual spaces 47

(iii) ⇒ (i) Since T is bounded, there exists C > 0 such that ‖Tv‖ ≤ C‖v‖ for all v ∈ V .
Let ǫ > 0, so for v, w ∈ V , there exists ‖v − w‖ < ǫ/C. Then ‖Tv − Tw‖ =
‖T (v − w)‖ ≤ C‖v − w‖ < ǫ. And so T is continuous.

Definition 6.4. Let V,W be normed vector spaces. Hom(V,W ) is the set of all
bounded linear maps from T : V →W .

Definition 6.5. Given a bounded linear map T : V →W . There exists a norm

‖T‖ = sup
v∈V,‖v‖≤1

‖Tv‖.

We also have the inequality ‖Tv‖ ≤ ‖T‖‖v‖ for all v ∈ V , such that ‖T‖ is the minimum
C such that ‖Tv‖ ≤ C‖v‖.

Remark. Hom(V,W ) is a normed vector space with the above norm and operations defined
by (S + T )(v) = S(v) + T (v) and (λT )(v) = λT (v) for S, T ∈ Hom(V,W ), v ∈ V and
λ ∈ F.

6.II Dual spaces

Definition 6.6. Let V be a normed vector space. The dual space, V ∗, is Hom(V,F).

Theorem 6.7. Let V be a normed vector space and W a Banach space. Then
Hom(V,W ) is a Banach space.

Proof. Let (Tn) ∈ Hom(V,W ) be a Cauchy sequence and v ∈ V . We want to show that
there exists some T ∈ Hom(V,W ) such that Tn → T .

Now we have (Tn(v)) is Cauchy in W since for all n,m ∈ N, ‖Tn(v) − Tm(v)‖ ≤ ‖Tn −
Tm‖‖v‖. And so since W is Banach, there exists some w ∈ W such that Tn(v) → w for
n → ∞. Now let T : V → W , where T (v) := limn→∞ Tn(v). Now we have T (λu+ µv) =
limn→∞ Tn(λu+ µv) = λ limn→∞ Tn(u) + µ limn→∞ Tn(v) = λ(T (u)) + µ(T (v)), for all
λ, µ ∈ F and u, v ∈ V , i.e., T is a linear map.

Since Tn(v) → T (v), we have that for ǫ > 0 there exists N ∈ N such that for all n > N ,
we have ‖Tn(v)−T (v)‖ < ǫ, and so ‖T (v)‖ = ‖Tn(v)−T (v)−Tn(v)‖ ≤ ‖Tn(v)−T (v)‖+
‖Tn(v)‖ < ǫ + ‖Tn(v)‖. And since (Tn) ∈ Hom(V,W ), we have that T is bounded. So T
is in Hom(V,W ).

Now, since (Tn) is Cauchy, let ǫ > 0, then there exists N ∈ N such that ‖Tm − Tn‖ < ǫ/2
for m,n ≥ N . And since Tn(v) → T (v) in W , we have that for v ∈ V and ‖v‖ ≤ 1, then
‖Tm(v)− Tn(v)‖ < ǫ/2. Now take the limit as m→ ∞, for n ≥ N , ‖T (v)− Tn(v)‖ ≤ ǫ/2.
Thus,

‖T − Tn‖ = sup
v∈V,‖v‖≤1

‖T (v)− Tn(v)‖ ≤ ǫ/2 < ǫ.

So, then T is the norm limit of (Tn) in Hom(V,W ), which means Hom(V,W ) is complete.

Corollary 6.8. Let V be a normed vector space, then V ∗ is a Banach space.
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Proof. By the above theorem, Hom(V,F) is a Banach space since F is complete. So V ∗ is
a Banach space whether V is complete or not.

Proposition 6.9. Let V be a Banach space, and W a closed subspace of V . Then W is
a Banach space.

Proof. Let (vn) be a Cauchy sequence in W . Then it is also Cauchy in V , and therefore
converges to some v ∈ V . And since W is closed in X, we have v ∈ W . Hence W is a
Banach space.

6.III The Hahn Banach theorem

The Hahn-Banach theorem is a fundamental result in functional analysis. The proof is
omitted here. The interested reader is directed to one of the following for a proper proof:
[4], [7], [16], [22], [24], [27], [33], [37], or [38].

The next result is known as the Hahn-Banach theorem.

Theorem 6.10. Let V be a normed vector space, and W ⊆ V be a subspace, and let
f : W → F be a bounded linear map. Then there exists a bounded linear map F : V → F

such that F |w = f , where F |w = F :W → F, and ‖F‖ = ‖f‖.
What this essentially says is that for a normed vector space V and a subspace W ⊆ V ,
every norm on a bounded linear map on W can be extended to V .

6.IV Double Duals

Definition 6.11. Given a normed vector space V , we have the double dual V ∗ ∗ :=
(V ∗)∗. We define the map φ : V → V ∗∗ by φ(v)(f) = f(v), for v ∈ V and f ∈ V ∗.

φ(v) is linear, since for all v ∈ V , f, g ∈ V ∗, and λ, µ ∈ F, we have φ(v)(λf + µg) =
(λf+µg)(v) = λf(v)+µg(v) = λφ(v)(f)+µφ(v)(g). And it is bounded since ‖φ(v)(f)‖ =
‖f(v)‖ ≤ ‖v‖‖f‖ so ‖φ(v)‖ ≤ ‖v‖ for all v ∈ V . So, indeed φ(v) is a bounded linear map,
φ(v) ∈ (V ∗)∗.

Proposition 6.12. ‖φ(v)‖ = ‖v‖ for all v ∈ V (i.e., φ is an isometry).

Proof. We need some F ∈ V ∗ such that ‖φ(v)(F )‖ = ‖v‖‖F‖, i.e., ‖F (v)‖ = ‖v‖‖F‖. If
v = 0, then it is clear. So, let v 6= 0 and define f : Span(v) → F by f(λv) = λ‖v‖. So

‖f‖ = sup
0 6=λ∈F

‖f(λv)‖
‖λv‖ =

|λ|‖v‖
|λ|‖v‖ = 1.

Now, by the Hahn-Banach theorem, we have F : V → F such that ‖F‖ = 1 and F (λ‖v‖) =
λ‖v‖ for all λ ∈ F. Hence, ‖v‖‖F‖ = ‖v‖ = ‖F (v)‖ = ‖φ(v)(F )‖. So ‖φ(v)‖ = ‖v‖ for all
v ∈ V .

Now we prove Theorem 5.46 (i.e., any normed vector space has a completion).

Proof. We know from above, that any dual space is a Banach space. So φ(V ) ⊆ (V ∗)∗ is
Banach. So then, φ(V ) is also Banach. Thus, φ(V ) is dense in φ(V ). So V̂ = φ(V ).
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Example 6.13. In Example 5.39, we said C[−1, 1] defined with that norm is not
Banach thus not complete. But, it has a completion, Lp[0, 1].

7 Hilbert Spaces

In this chapter, we will learn about inner product spaces, orthogonality in vector spaces,
and adjoints.

This is based on the presentations given in [27] and [4].

7.I Inner product spaces

In this section, we will see how an inner product induces a norm, so that any inner product
space is a normed vector space.

Definition 7.1. Let V be a F-vector space. An inner product on V is a map 〈·, ·〉 :
V × V → F such that

(i) 〈u, λv + µw〉 = λ〈u, v〉+ µ〈u,w〉 for all u, v, w ∈ V and λ, µ ∈ F

(ii) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V

(iii) 〈u, u〉 ≥ 0 and equality holds if and only if u = 0.

Here, ᾱ means the complex conjugate, for α ∈ F. So, x+ iy = x− iy for x, y ∈ R. An
inner product space is (V, 〈·, ·〉), i.e., a vector space equipped with an inner product.

The following result is known as the Cauchy-Shwarz inequality .

Lemma 7.2. Let V be an inner product space, and v, w ∈ V . Then

|〈u, v〉| ≤
√

〈u, u〉〈v, v〉.

Proof. Assume v 6= 0, otherwise it is trivial (〈u, v〉 = 0 and 〈v, v〉 = 0). So 〈v, v〉 6= 0. And
so, for λ ∈ F, we have

0 ≤ 〈u− λv, u− λv〉 = 〈u− λv, u〉+ 〈u− λv,−λv〉
= 〈u, u〉 − λ̄〈u, v〉 − λ〈u, v〉+ λ̄λ〈v, v〉

And so, let λ = 〈u,v〉
〈v,v〉 , then

〈u, u〉 − 〈u, v〉〈u, v〉
〈v, v〉 − 〈u, v〉〈u, v〉

〈v, v〉 +
〈u, v〉〈u, v〉

〈v, v〉 ≥ 0.

And so,
〈u, u〉〈v, v〉 − 2|〈u, v〉|2 + |〈u, v〉|2 ≥ 0

and the result follows from there.

This next result shows that all inner product spaces are normed spaces with an induced
norm.

Proposition 7.3. If V is an inner product space and v ∈ V , then ‖v‖ =
√

〈v, v〉 is a
norm.
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Proof. If ‖v‖ = 0, then 〈v, v〉 = 0, so v = 0. And if v = 0, then
√

〈v, v〉 = 0 = ‖v‖. Now
let λ ∈ F and v ∈ V . Then ‖λv‖2 = 〈λv, λv〉 = λλ̄〈v, v〉 = |λ|2‖v‖2, so ‖λv‖ = |λ|‖v‖.
Finally, let w ∈ V , then by using Cauchy-Shwarz,

‖v + w‖2 = 〈v + w, v + w〉
= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= ‖v‖2 + 〈v, w〉+ 〈v, w〉+ ‖w‖2

= ‖v‖2 + 2ℜ〈v, w〉+ ‖w‖2

≤ ‖v‖2 + 2|〈v, w〉|+ ‖w‖2

≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2

= (‖v‖+ ‖w‖)2

And so we then get ‖v + w‖ ≤ ‖v‖+ ‖w‖.

Thus now we have show that all inner product spaces are normed spaces; all normed spaces
are metric spaces; and all metric spaces are topological spaces. We have the following
hierarchy of spaces: Vector Spaces → Topological Spaces → Metric Spaces → Normed
Spaces → Inner Product Spaces.

Proposition 7.4. Let V be a F-vector space. A norm on the space V comes from an
inner product if and only if it satisfies the parallelogram law (i.e., ‖u+ v‖2 + ‖u− v‖2 =
2(‖u‖2 + ‖v‖2) for all u, v ∈ V ).

Proof.

(⇒) Let V be a vector space with an inner product, and with the induced norm (i.e.,
‖v‖ =

√

〈v, v〉 for v ∈ V ). Let u, v ∈ V , then,

‖u+ v‖2 + ‖u− v‖2 = 〈u+ v, u+ v〉+ 〈u− v, u− v〉
= 〈u+ v, u〉+ 〈u+ v, v〉+ 〈u− v, u〉 − 〈u− v, v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, v〉+ 〈v, u〉+ 〈u, u〉
− 〈u, v〉 − 〈v, u〉+ 〈v, v〉

= 2〈u, u〉+ 2〈v, v〉 = 2(‖u‖2 + ‖v‖2)

(⇐) Now let the vector space V with a norm satisfy the parallelogram. We want to show
that this norm is the induced norm by the inner product on V . That is, we have
‖u + v‖2 + ‖u − v‖2 = 2(‖u‖2 + ‖v‖2) for all u, v ∈ V , and we want to show that
there exists an inner product 〈u, v〉 for all u, v ∈ V , such that 〈u, u〉 = ‖u‖2 for all
u ∈ V , in particular, that this inner product is uniquely determined by the induced
norm.
We claim ‖u+ v‖2 = 〈u+ v, u+ v〉 and ‖u− v‖2 = 〈u− v, u− v〉 so ‖u+ v‖2−‖u−
v‖2 = 〈u+ v, u+ v〉 − 〈u− v, u− v〉 = 4ℜ〈u, v〉. Thus, the real part of the inner
product, ℜ〈u, v〉, is 1/4(‖u+ v‖2−‖u− v‖2). And we know that the imaginary part
of an equation can be found from the real part of the equation, i.e., ℜ(−i(u+ iv)) =
ℑ(u+ iv). So, we let ℑ〈u, v〉 = ℜ(−i〈u, v〉), and so we find

〈u, v〉 = ℜ〈u, v〉+ ℑ〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2
4
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This is because ℑ(〈u, v〉) = ℜ(−i〈u, v〉) = ℜ(〈u, iv〉).
Also, note that this is only for when F = C. When F = R, then we have

〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2
4

.

And we are done.

The following result shows us that the inner product is continuous.

Proposition 7.5. Given an inner product space V . If (un) and (vn) are sequences in V
such that un → u and vn → v, then 〈un, vn〉 → 〈u, v〉.

Proof.

|〈un, vn〉 − 〈u, v〉| = |〈un, vn〉 − 〈un, v〉+ 〈un, v〉 − 〈u, v〉|
= |〈un, vn − v〉+ 〈un − u, v〉|
≤ |〈un, vn − v〉|+ |〈un − u, v〉|
≤ ‖un‖‖vn − v‖+ ‖un − u‖‖v‖

And since un → u, we have ‖un−u‖ → 0; similarly, as vn → v, we have ‖vn−v‖ → 0; and
also ‖un‖ → ‖u‖. So, then, we have |〈un, vn〉 − 〈u, v〉| → 0, and so 〈un, vn〉 → 〈u, v〉.

Definition 7.6. An inner product space that is complete is a Hilbert space.

Given an inner product space V . We say that the Hilbert space V̂ is a completion of V if
V is dense in V̂ with the same inner product. Constructing this is similar to constructing
completions in Normed spaces in the previous chapter.

Example 7.7. • Fn has an inner product 〈v, w〉 = vTw.

• Consider the space l2, the set of sequences in F such that
∑∞

n=1 |an|2 < ∞. If
(an), (bn) ∈ l2 then by Cauchy-Schwarz for FN , we get

N
∑

n=1

|anbn| ≤
(

N
∑

n=1

|an|2
)

1

2
(

N
∑

n=1

|bn|2
)

1

2

hence
∑∞

n=1 anbn converges absolutely and hence converges. Now, define the
inner product on l2 to be 〈(an), (bn)〉 =

∑∞
n=1 anbn. This is a Hilbert space.

7.II Orthogonal complements

Definition 7.8. Let H be a Hilbert space and S ⊆ H. The orthogonal complement
S⊥ = {x ∈ H : 〈x, y〉 = 0 for all y ∈ S}.

Properties of orthogonal complements:

Proposition 7.9. Let H be a Hilbert space and S ⊆ H. Then S⊥ is a closed
vector subspace of H.
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Proof. We check the vector subspace criterion. We first have 0 ∈ S⊥, since
〈0, u〉 = 0 for all u ∈ S. Now let u, v ∈ S⊥, so 〈αu+ βv,w〉 = α〈u,w〉 +
β〈v, w〉 = 0 for all w ∈ S. Hence αu+ βv ∈ S⊥, and S⊥ is a vector subspace
of H.
Now let (sn) ∈ S⊥ such that it converges to some s ∈ S⊥. Then for all t ∈ S,
we have 〈s, t〉 = limn→∞〈sn, t〉 = 0. So, s ∈ S⊥. And so is closed, since

S⊥ = S⊥.

Proposition 7.10. Let H be a Hilbert space and let A,B ⊆ H. Then (A ∪
B)⊥ = A⊥ ∩B⊥.

Proof. Suppose v ∈ (
⋃

Si)
⊥
. Then we have 〈v, x〉 = 0 for all x ∈ Si and all

i. Hence v ∈ S⊥
i for all i, so v ∈ ⋂S⊥

i . Conversely, if we suppose v ∈ ⋂S⊥
i .

Then v ∈ S⊥
i for all i, so 〈v, x〉 = 0 for all x ∈ Si and all i. Thus we have

v ∈ (
⋃

Si)
⊥. This proves (A ∪B)⊥ = A⊥ ∩B⊥.

Proposition 7.11. Let H be a Hilbert space, let S ⊆ H, and let S′ ⊆ S. Then
S⊥ ⊆ (S′)⊥.

Proof. Let v ∈ S⊥. Then 〈v, x〉 = 0 for all x ∈ S. Since S′ ⊆ S, we have
〈v, x〉 = 0 for all x ∈ S′. So v ∈ (S′)⊥. And so S⊥ ⊆ (S′)⊥.

Proposition 7.12. Let H be a Hilbert space and V a subspace of H. Then
(V̄ )⊥ = V ⊥.

Proof. We have V ⊆ V̄ , so by the above result, we know V̄ ⊥ ⊆ V ⊥. Now let
w ∈ V ⊥. We want to show w ∈ V̄ ⊥, i.e., 〈w, v〉 = 0 for all v ∈ V̄ . There
exists a sequence (vn) ∈ V such that vn → v ∈ V̄ . Now, by the continuity
of the inner product, we have 〈w, vn〉 → 〈w, v〉 = 0. And so w ∈ V̄ ⊥. Thus
V ⊥ ⊆ V̄ ⊥. And we are done.

Proposition 7.13. Let H be a Hilbert space, and S ⊆ S⊥. If x ∈ S and
v ∈ S⊥, then ‖x+ v‖2 = ‖x‖2 + ‖v‖2.
Proof. ‖x + v‖2 = 〈x, x〉 + 〈x, v〉 + 〈v, x〉 + 〈v, v〉 = 〈x, x〉 + 〈v, v〉 = ‖x‖2 +
‖v‖2.

Lemma 7.14. Let H be a Hilbert space, and V be a closed subspace. Then V ∩V ⊥ = {0}.

Proof. Let v ∈ V ∩ V ⊥. We want to show v = 0. So since v ∈ V ⊥, we have 〈v, x〉 = 0 for
all x ∈ V . Now since v is in the intersection, we can let x := v ∈ V , then 〈v, x〉 = 〈v, v〉 =
‖v‖2 = 0, and so v = 0. And so V ∩ V ⊥ = {0}.

The following result is known as the Hilbert space decomposition theorem. The proof of
this can be found in [27] and [4].

Theorem 7.15. Let H be a Hilbert space. Let V ⊆ H be a closed vector subspace. Then
H = V ⊕ V ⊥, i.e., V ∩ V ⊥ = {0}, and for all v ∈ H, we can write v = v1 + v2 for v1 ∈ V
and v2 ∈ V ⊥.

So given a Hilbert space H and a closed vector space V ⊆ H, we have x ∈ H can be
uniquely written as x = v+w where v ∈ V and w ∈ V ⊥. And so we define the orthogonal
projection map P onto V as P : H → H given by P (x) = v.

Corollary 7.16. Let S ⊆ H, then Span(S) is dense in H if and only if S⊥ = {0}.
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Proof.

(⇒) Let Span(S) be dense in H, then Span(S) = H. So Span(S)
⊥
= {0}, i.e., S⊥ = {0}.

(⇐) Now, let S⊥ = {0}. We have Span(S) a closed subspace of H. By the Hilbert space

decomposition theorem, H = Span(S)⊕ Span(S)
⊥
= Span(S)⊕ S⊥ = Span(S).

7.III Dual spaces

Let H be a Hilbert space, v ∈ H. Then, we define the linear map Jv : H → F by
Jv(w) = 〈v, w〉. It is clear that, by the Cauchy-Shwarz, for w ∈ H, we have |Jv(w)| =
|〈v, w〉 ≤ ‖v‖‖w‖. So, Jv is a bounded linear map, with ‖Jv‖ ≤ ‖v‖.
Now, |Jv(v)| = |〈v, v〉 = ‖v‖2, so Jv(v)

‖v‖ = ‖v‖. Hence, ‖Jv‖ ≥ ‖v‖, so ‖Jv‖ = ‖v‖.
The map Jv is an element of the dual space H∗.

The following result is known as Riesz representation theorem, which tells us that the
above map is bijective.

Theorem 7.17. Let f : H → F be a bounded linear map. Then, we have v ∈ H such that
f = Jv.

Proof. Consider ker f = {v ∈ H : f(v) = 0}. And ker f is a vector subspace. So f
is a bounded linear map, so it is continuous. So f−1({0}) = ker f is closed. Hence,
H = (ker f) ⊕ (ker f)⊥. If ker f = H, then f = 0 and 0 = J0, so we are done. Suppose
ker f 6= H, let 0 6= x ∈ (ker f)⊥. Let v ∈ H, we write v = y + z, for y ∈ kerH and
z ∈ (kerH)⊥. Then, f(v) = f(y) + f(z) = f(z), so 〈x, v〉 = 〈x, y〉+ 〈x, z〉 = 〈x, z〉. Now,
let w x

f(x) , so f(w) = 1, 〈w, v〉 = 〈w, z〉. Now consider f(v−f(v)w) = f(v)−f(v)f(w) = 0.

Hence, v − f(v)w ∈ ker f , and w ∈ (ker f)⊥. So, 〈w, v − f(v)w〉 = 0. Hence, 〈w, v〉 =
f(v)〈w,w〉. So, define u = w

‖w‖2 , then 〈u, v〉 = f(v).

Theorem 7.18. Let H,H ′ be Hilbert spaces, and T : H → H ′ be a bounded linear map.
Then we have a unique bounded linear map T ∗ : H → H called the adjoint of T , such that
〈T ∗x, y〉 = 〈x, Ty〉 for all x ∈ H ′ and y ∈ H.

Proof. Let x ∈ H. Then we have a bounded linear map y 7→ 〈x, Ty〉. Now by Riesz’s
representation, we have a unique element T ∗x ∈ H such that 〈T ∗x, y〉 = 〈x, Ty〉 for all
y ∈ H.

Proposition 7.19. Let S, T : H → H be bounded linear maps and let α, β ∈ F, then

(i) (αS + βT )∗ = ᾱS∗ + β̄T ∗

(ii) (S∗)∗ = S

(iii) (ST )∗ = T ∗S∗

Proof.

(i) for all x, y ∈ H, we have

〈x, (α(S) + β(T ))y〉 = α〈x, Sy〉+ β〈x, Ty〉
= α〈S∗x, y〉+ β〈T ∗x, y〉
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= 〈ᾱS∗x, y〉+ 〈β̄T ∗x, y〉
= 〈ᾱS∗x+ β̄T ∗x, y〉 = 〈(ᾱS∗ + β̄T ∗)x, y〉

(ii) for all x, y ∈ H, we have, 〈x, S∗y〉 = 〈S∗y, x〉 = 〈y, Sx〉 = 〈Sx, y〉. Therefore we have
(S∗)∗ = S.

(iii) for all x, y ∈ H, we have

〈x, (ST )y〉 = 〈S∗x, Ty〉
= 〈T ∗S∗x, y〉

Therefore, we have (ST )∗ = T ∗S∗.

Example 7.20. Consider R : l2 → l2,
R(a1, a2, a3, . . .) = (0, a1, a2, a3, . . .)
〈(a1, a2, . . . , ), T (b1, b2, . . .)〉 = 〈(a1, a2, . . .), (0, b1, b2, . . .)〉 = a2b1 + a3b2 + a4b3 +
· · · = 〈(a2, a3, . . .), (b1, b2, . . .)〉 = 〈L(a1, a2, . . .), (b1, b2, . . .)〉, where L(a1, a2, . . .) =
(a2, a3, . . .).
So, R∗ = L and L∗ = R.

Remark. If V is a finite dimensional vector space T : V → V , which is injective, then
kerT = {0}; and by the Rank-Nullity theorem, dimkerT + dim imT = dimV , we have
dim imT = dimV , which means imT = V , so T is surjective.
In an infinite dimensional space R : l2 → l2, we have R is injective but not surjective.

We call the elements x, y ∈ H, where H is a Hilbert space and x 6= y, orthogonal if
〈x, y〉 = 0. And, indeed, if x, y are orthogonal, we see ‖x + y‖2 = 〈x+ y, x+ y〉 =
〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 = ‖x‖2 + ‖y‖2.

8 Banach Algebras

Now, we come to the important bit of Functional Analysis: Normed and Banach Algebras.
We will learn the basics of Banach Algebras, and Spectral theory; concluding with the
fact that the spectrum is non-empty.

This is mainly based on the presentations given in [4], [27], and [38].

Definition 8.1. A F-vector space V is an algebra if there is a multiplication operation
V × V → V , (u, v) 7→ u, v such that for all u, v, w ∈ V and λ, µ ∈ F,

(i) u(v + w) = uv + uw and (u+ v)w = uw + vw

(ii) (λu)(µv) = (λµ)(uv)

Definition 8.2. An algebra V over C is a Banach algebra if V is a Banach space and
for all u, v ∈ V , we have ‖uv‖ ≤ ‖u‖‖v‖.

Remark. We call the algebra V over C a normed algebra if V is a normed space and it
satisfies ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ V . If V is a complete normed vector algebra then it
is a Banach algebra.
If V is a normed algebra with multiplicative identity, then V is a unital algebra.
If V is an algebra that is commutative as a ring, then it is a commutative algebra.
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It can easily be seen that the operations of addition and multiplication in a normed algebra
are continuous. Also, the operations of addition and multiplication extend continuously
to the completion of a normed algebra; a completion of a normed algebra is a Banach
algebra.

Example 8.3. Let V be a Banach space. We define
L(H) = {T : V → V : where T is a bounded linear operator}. We notice that,
for S, T ∈ L(v), v ∈ V , (multiplication in composition), ‖(ST )(v)‖ = ‖S(Tv)‖ ≤
‖S‖ · ‖Tv‖ ≤ ‖S‖ · ‖T‖ · ‖v‖. So, for v 6= 0, we have ‖(ST )(v)‖

‖v‖ ≤ ‖S‖ · ‖T‖ so then

‖ST‖ ≤ ‖S‖ · ‖T‖.

Example 8.4. Let K be a compact topological space, then
C(K) = {f : K → C f is continuous}. For f, g ∈ C(K) and x ∈ K, addition:
(f + g)(x) = f(x)+ g(x); scalar multiplication: (λf)(x) = λf(x); and multiplication:
(fg)(x) = f(x)g(x) (multiplication is commutative). The norm: ‖f‖ = sup{|f(x) :
x ∈ K}. So, for f, g ∈ C(K), x ∈ K, we see |f(x)| ≤ supx∈K f(x) = ‖f‖, and same
for g, so then |f(x)g(x)| = |f(x)| · |g(x)| ≤ ‖f‖ · |g(x)| ≤ ‖f‖ · ‖g‖, so after taking the
supremum, we get ‖fg‖ ≤ ‖f‖ · ‖g‖.

Let V be a unital Banach algebra over C, i.e., we have a unit 1 ∈ V such that 1x = x1 = x
for all x ∈ A. x is invertible if we have x−1 such that x−1x = xx−1 = 1. It can easily be
shown that, indeed, for each element x, there exists a unique inverse. Suppose not, and
let x ∈ A, so there exists y1, y2 ∈ A such that y1x = 1 = xy1 and y2x = 1 = xy2; and so
y1 = 1y1 = (y2x)y1 = y21 = y2.

Remark. ‖x2‖ ≤ ‖x‖‖x‖ = ‖x‖2, ‖x3‖ ≤ ‖x2‖‖x‖ ≤ ‖x‖3, etc. . . .
The following result is known as the Murray-von Nuemann criterion.

Theorem 8.5. Let A be a unital Banach algebra and x ∈ A. If ‖x‖ < 1, then 1 − x is
invertible.

Proof. We first notice that in C if |λ| < 1, then 1/(1− λ) = 1+ λ+ λ2 + λ3 + · · · . So, we
claim (1−x)−1 = 1+x+x2 + · · · , if ‖x‖ < 1. Let Sn = 1+x+x2 + · · ·+xn. For n > m,
we have Sn − Sm = xm+1 + xm+2 + · · ·+ xn = xm+1(1 + x2 + · · ·+ xn−m−1). So, then

‖Sn − Sm‖ ≤ ‖xm+1‖‖1 + x+ · · ·+ xn−m+1‖
≤ ‖x‖m+1(1 + ‖x‖+ ‖x‖2 + · · ·+ ‖x‖n−m−1)

≤ ‖x‖m+1(1 + ‖x‖+ ‖x‖2 + · · · ) (‖x‖ < 1)

=
‖x‖m+1

1− ‖x‖ → 0 as m→ ∞

So, (Sn) is Cauchy, and so it converges as A is a Banach algebra. Now, let Sn → S as
n→ ∞, then Sn(1−x) = (1+x+ · · ·+xn)(1−x) = 1+x+ · · ·+xm−x−x2−· · ·−xn+1 =
1 − xn+1. So, ‖Sn(1 − x) − 1‖ ≤ ‖ − xn+1‖ ≤ ‖x‖n+1 → 0 as n → ∞ as ‖x‖ < 1. So
S(1− x)− 1 = 0, i.e., S(1− x) = 1, similarly, (1− x)S = 1.

Corollary 8.6. Given a unitral Banach algebra A, let x ∈ A and λ ∈ F\{0}. If ‖x‖ < |λ|,
then λ− x is invertible.
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Proof. Since ‖x‖ < λ, then ‖x/λ‖ < 1, and by the above result, we know 1 − x/λ is

invertible in A. We claim the inverse to be (1−x/λ)−1

λ . And, indeed,

(λ− x)
1− x/λ

λ
= (1− x/λ)(1− x/λ)−1 = 1

So, by the above result again, we find the inverse to be

(λ− x)−1 =
1

λ
(1 +

x

λ
+
x2

λ2
+ · · · ).

Definition 8.7. Let A be a unital complex Banach algebra, x ∈ A. Then we define
the spectrum, σ(x) = {λ ∈ C : x− λI is not invertible}.

Example 8.8. Let V be a Banach space, and T ∈ L(v). Let λ be an eigenvalue of
T , then Tv = λv for some v 6= 0. i.e. (T − λI)v = 0 where v 6= 0. This implies
ker(T − λI) 6= {0}, and so T − λI is not injective and not invertible.
If V is finite-dimensional, then if T−λI ∈ L(v) is not invertible, then det(T−λI) = 0.
So, λ is an eigenvalue.

Theorem 8.9. Let A be a unital complex Banach algebra, x ∈ A. Then, σ(x) is a
non-empty compact subset of C.

We first prove part of the statement (i.e., it is compact). Then we will soon prove the rest
of the statement.

Proof (I). σ(x) is closed by the Murray-von Nuemann criterion. And σ(x) is bounded,
since if we let λ > ‖x‖, then ‖x/λ‖ < 1, so 1−x/λ is invertible. And so, −λ(1−x/λ) = x−λ
is invertible and λ /∈ σ(x). So, if λ ∈ σ(x), then |λ| ≤ ‖x‖. And so σ(x) is compact by
Heine-Borel.

Definition 8.10. Let A be a unital Banach algebra, x ∈ A. The resolvent set of x is the
complement of the spectrum, ρ(x) = C \ σ(x), i.e., ρ(x) = {λ ∈ C : x− λ is invertible}.
We also define the resolvent map Rρ(x) : ρ(x) → A, given by λ 7→ (λ − x)−1. So if
λ ∈ ρ(x), then the resolvent is Rλ(x) = (λ− x)−1.

The next result shows the resolvent is bounded.

Proposition 8.11. Let x ∈ A, then ‖Rλ(x)‖ → 0 as λ→ ∞.

Proof. ‖(λ − x)−1‖ = ‖λ−1(1 − x/λ)−1‖, by taking limits, we see ‖(λ − x)−1‖ → 0, as
λ→ ∞.

The following result shows the resolvent identity.

Lemma 8.12. Let λ, µ ∈ ρ(x). Then Rλ −Rµ = (µ− λ)RλRµ.

Proof. We first see (µ−x)−(λ−x) = µ−λ. And so Rλ−Rµ = Rλ((µ−x)−(λ−x))Rµ =
(µ− λ)RλRµ.
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Definition 8.13. Let D ⊆ C be a connected open set. Let V be a complex Banach
space. A function f : D → V is holomorphic if there is a function f ′ : D → V , the
derivative of f , such that

lim
h→0

∥

∥

∥

∥

f(z + h)− f(z)

h
− f ′(z)

∥

∥

∥

∥

= 0.

Lemma 8.14. Let A be a complex unital Banach algebra, x ∈ A, and f(λ) = Rλ(x).
Then there exists a holomorphic function f : ρ(x) → A.

Proof. Let g(λ) = −Rλ(x)
2 = −(λ− x)−2. We want to show that as h→ 0,

∥

∥

∥

∥

f(λ+ h)− f(λ)

h
− g(λ)

∥

∥

∥

∥

→ 0.

So, then

∥

∥

∥

∥

f(λ+ h)− f(λ)

h
− g(λ)

∥

∥

∥

∥

=

∥

∥

∥

∥

1

h
((λ− x+ h)−1 − (λ− x−1)) + (λ− x)−2

∥

∥

∥

∥

.

Now, let for h > 0, by the above results, λ−x+h is invertible, and so we have (λ−x+h)−1 =
(λ− x)−1(1− h(λ− x)−1 + h2(λ− x)−2 − · · · ). And so

∥

∥

∥

∥

f(λ+ h)− f(λ)

h
− g(x)

∥

∥

∥

∥

= ‖h(λ− x)−3 − h2(λ− x)−4 + · · · ‖.

And so the result follows from there. So f(λ) is holomorphic with g(λ) as its derivative.

The next result is known as Liouville’s theorem.

Theorem 8.15. Let A be a complex Banach space. Let f : C → A be a bounded holomor-
phic function. Then f is constant.

Sketch (idea). Let g ∈ A∗, so g is a map A → C. We want to show g ◦ f : C → C is a
bounded holomorphic function, so that we can use Liouville’s theorem on C to show that it
is constant. So, |g◦f(λ)| ≤ ‖g‖‖f‖, and since f is bounded and holomorphic, and by Hahn-
Banach, g is also bounded and holomorphic, we have that by Liouville’s theorem on C,
the function is constant and holomorphic. So, g(f(λ)− f(µ)) = 0, i.e. g(f(λ)) = g(f(µ)).
And by Hahn Banach again, we see f(λ) = f(µ), thus f is constant.

Now, we can prove that the spectrum is non-empty (Theorem 8.9).

Proof (II). Suppose σ(x) = ∅, then ρ(x) = C. And by the above lemma, there exists a
holomorphic function f : C → A where f(λ) = (λ− x)−1. And by above results, we know
‖f(λ)‖ → 0 as λ → ∞. So, it follows by Louiville’s theorem f(λ) = 0 for all λ ∈ C, i.e.,
(x− λ)−1 for all λ. This is a contradiction since Rλ 6= Rµ for λ 6= µ.

The next result is called the Spectral mapping theorem for polynomials . The proof for this
can be found in [27] and [4].

Theorem 8.16. Let A be a unital Banach algebra, a ∈ A, and let p be a polynomial.
Then σ(p(x)) = pσ(x).
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8.I C*-algebras Brief

In this section we will briefly study C∗-algebras, which is a Banach algebra together with
an involution.

This is based on the presentations given in [8] and [26].

Definition 8.17. An involution on an algebra A over C is a map A → A, given by
x 7→ x∗, such that

(i) (λx+ µy)∗ = λ̄x∗ + µ̄y∗ for all x, y ∈ A and λ, µ ∈ F

(ii) (x∗)∗ = x for all x ∈ A

(iii) (xy)∗ = y∗x∗ for all x, y ∈ A

A C∗-algebra A is a Banach algebra over C together with an involution, such that
‖x‖2 = ‖x∗x‖ for all x ∈ A.

We say that a norm on a Banach algebra A together with an involution such that ‖x‖2 ≤
‖x∗x + y∗y‖ for all x, y ∈ A is a C∗-norm. The completion of a Banach algebra with an
involution, is a C∗-algebra.

Example 8.18. The set of bounded operators on a Hilbert space H, L(H), is a
C∗-algebra, by defining the involution to be the adjoints in H.
The complex numbers C forms a C∗-algebra, by defining the involution λ∗ = λ̄ and
where the norm is ‖λ‖ = |λ|.

Given a C∗-algebra A, if A has a unit 1 ∈ A, i.e., an identity element. Then it can easily
be shown 1∗ = 1. This can be seen by 1 = (1∗)∗ = (1∗1)∗ = (1∗(1∗)∗) = 1∗1 = 1∗.

Proposition 8.19. Given a C∗-algebra A, the involution is continuous.

Proof. Let xn ∈ A such that xn → x ∈ A. So, ‖x∗n − x∗‖ = ‖(xn − x)∗‖. Now we want to
show ‖(xn−x)∗‖ = ‖xn−x‖. So ‖xn−x‖2 = ‖(xn−x)∗(xn−x)‖ ≤ ‖(xn−x)∗‖‖xn−x‖,
so if xn − x 6= 0 then ‖xn − x‖ ≤ ‖(xn − x)∗‖ (otherwise if xn − x = 0, then we are done).
So, ‖(xn − x)∗‖ ≤ ‖((xn − x)∗)∗‖ = ‖xn − x‖. So, then, ‖(xn − x)∗‖ = ‖xn − x‖.
So, we now have ‖x∗n − x∗‖ = ‖xn − x‖ → 0 since xn → x. Therefore, the involution is
continuous.

Proposition 8.20. If A is a C∗-algebra, then σ(x∗) = σ(x) for all x ∈ A.

Given a C∗-algebra A. We call x ∈ A normal , if xx∗ = x∗x. We call x ∈ A Hermitian if
x = x∗.

The following result is left as an exercise to the reader.

Proposition 8.21. If x is an element of a C∗-algebra A. Then x∗x is Hermitian.

Definition 8.22. Given C∗-algebras A and B, a ∗-homomorphism is an algebra ho-
momorphism α : A → B such that α(x∗) = α(x)∗ for all x ∈ A. A ∗-homomorphism,
α, between unital C∗-algebras is itself unital if α(1) = 1.

Theorem 8.23. Any ∗-homomorphism is continuous, with closed image, and is bounded
with norm at most one. Any injective ∗-homomorphism is an isometry.
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So, the norm on a C∗-algebra is determined by the rest of the algebraic structure.

A ∗-homomorphism is an isomorphism of C∗-algebras if it is bijective.

Proposition 8.24. The inverse of a bijective ∗-homomorphism is also a ∗-homomorphism.
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A List of Inference Rules

Conjunction:
A B

A ∧B ∧-int

A ∧B
A

∧-elim A ∧B
B

∧-elim

Disjunction:
A

A ∨B ∨-int B

A ∨B ∨-int

Ai ∨ · · · ∨Aj

[Ai]
...
C

· · ·
[Aj ]
...
C

C
∨-elim

Implication & modus ponendo ponens :

A A⇒ B

B
⇒ -elim

[A]
...
C

A⇒ C
⇒ -int

falsum & contradictum:

⊥
A

⊥-elim
A ¬A

⊥ contradictum

reductio ad absurdum:
[A→ ⊥]

...
⊥
A

¬-elim

Equality:

t = t
= -int

s = t ϕ[s/x]

ϕ[t/x]
= -elim

For All Quantifier:

∀x : ϕ

ϕ[t/x]
∀-elim







t
...

ϕ[t/x]







∀x : ϕ
∀-int

Exists Quantifier:

ϕ[t/x]

∃x : ϕ
∃-int

∃x : ϕ











t
ϕ[t/x]

...
p











p
∃-elim
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B List of ZFC Axioms

Axiom 1 - Empty set. ∃x : ∀y : (y /∈ x)
There exists a set that contains no elements.

Axiom 2 - Extensionality. ∀x : ∀y : (x = y) ⇔ ((x ⊆ y) ∧ (y ⊆ x))
Two sets are equal if and only if they have the same elements.

Axiom 3 - Pair set. ∀x : ∀y : ∃m : ∀u : (u ∈ m) ⇔ ((u = x) ∨ (u = y))
Given sets x and y. There exists a set whose elements are exactly x and y. We will define
this set, m, as {x, y}.
Axiom 4 - Union set. ∀x : ∃u : ∀y : ((y ∈ u) ⇔ (∃s : (y ∈ s) ∧ (s ∈ x)))
Given a set x. There exists a set u, whose elements are the elements of the elements of x.
We denote this set u as,

⋃

x.

Axiom 5 - Replacement schema.

∀x : [∀y, z, u : ((φ(y, z) ∧ φ(y, u)) ⇒ (z = u)) ⇒ (∃m : ∀t : (t ∈ m) ⇔ (∃s ∈ x : φ(s, t)))]

Given a set x and a formula φ(y, t), where for any y there exists at most one t such that
φ(y, t). Then there exists a set m of all those t, written as {t : ∃y ∈ x : φ(y, t)}.
Axiom 6 - Power set. ∀x : ∃y : ∀a : (a ∈ y) ⇔ (a ⊆ x)
Given a set x, there exists a set y, denoted as P(x), whose elements are the subsets of x.

Axiom 7 - Infinity. ∃x : (∅ ∈ x) ∧ (∀y : (y ∈ x) ⇒ (y ∪ {y} ∈ x))
Given a set y. There exists a set that contains the empty set, y, and y ∪ {y}.
Axiom 8 - Choice. ∀x : P (x) ⇒ ∃y : ∀a ∈ x : ∃!b ∈ a : a ∈ y, where P (x) ⇔ (∃a : (a ∈
x) ∧ (∀a : ∀b : (a ∈ x) ∧ (b ∈ x)) ⇒ ⋂{a, b} = ∅)
Give a set x, whose elements are non-empty and mutually disjoint. There exists a set y
which contains exactly one element of each element of x.

Axiom 9 - Foundation. ∀x : ∃a : (a ∈ x) ⇒ (∃y ∈ x :
⋂{x, y} = ∅)

Every non-empty set has a minimal element. More precisely, every non-empty set x
contains an element y that has none of its elements in common with x.

C Latin Phrases (Glossary)

ad infinitum: “to infinity” or “and so on”

contradictum: “contradiction”

de facto: “in fact”

ex falso sequitur quodlibet : “from falsehood anything follows”

falsum: “false”

id est : “that is” or more commonly abbreviated as ‘i.e.’

ipso facto: “follows from the fact”

modus ponendo ponens : “mode by affirming afirms” which means given the antecedent
and the implication (antecedent ⇒ conclusion), then we can deduce the conclusion
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modus tollendo tollens: “mode by denying denies” which is the opposite of the above.
Given the negation of the conclusion and the implication, then we can deduce the negation
of the antecedent

reductio ad absurdum: “reduction to absurdum” also known as proof by contradiction

tertium non datur : “the third is not given” or known by its inference law ‘law of excluded
middle (LEM)’ which just means that either p is true or ¬p is true

verum: “true”
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