is_proj' #
This file contains the definition of linear_map.is_proj'
and lemmas relating to it, which is essentially linear_map.is_proj
but as a linear map from E
to ↥U
.
def
isProj'
{R : Type u_1}
{E : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
{U : Submodule R E}
{p : E →ₗ[R] E}
(hp : LinearMap.IsProj U p)
:
linear_map.is_proj
but as a linear map from E
to ↥U
Instances For
theorem
isProj'_apply
{R : Type u_1}
{E : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
{U : Submodule R E}
{p : E →ₗ[R] E}
(hp : LinearMap.IsProj U p)
(x : E)
:
theorem
isProj'_eq
{R : Type u_1}
{E : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
{U : Submodule R E}
{p : E →ₗ[R] E}
(hp : LinearMap.IsProj U p)
(x : ↥U)
:
theorem
orthogonalProjection_eq_linear_proj'
{E : Type u_2}
{𝕜 : Type u_1}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
{K : Submodule 𝕜 E}
[HasOrthogonalProjection K]
:
↑(orthogonalProjection K) = K.linearProjOfIsCompl Kᗮ ⋯
theorem
orthogonalProjection_eq_linear_proj''
{E : Type u_2}
{𝕜 : Type u_1}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
{K : Submodule 𝕜 E}
[HasOrthogonalProjection K]
(x : E)
:
(orthogonalProjection K) x = (K.linearProjOfIsCompl Kᗮ ⋯) x
noncomputable def
orthogonalProjection'
{E : Type u_1}
{𝕜 : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
(U : Submodule 𝕜 E)
[HasOrthogonalProjection U]
:
Equations
- orthogonalProjection' U = U.subtypeL.comp (orthogonalProjection U)
Instances For
theorem
orthogonalProjection'_apply
{E : Type u_2}
{𝕜 : Type u_1}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
(U : Submodule 𝕜 E)
[HasOrthogonalProjection U]
(x : E)
:
(orthogonalProjection' U) x = ↑((orthogonalProjection U) x)
@[simp]
theorem
ContinuousLinearMap.range_toLinearMap
{E : Type u_3}
{𝕜 : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
{F : Type u_1}
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 F]
{p : E →L[𝕜] F}
:
@[simp]
theorem
orthogonalProjection.range
{E : Type u_2}
{𝕜 : Type u_1}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
(U : Submodule 𝕜 E)
[HasOrthogonalProjection U]
:
@[simp]
theorem
orthogonalProjection'_eq
{E : Type u_2}
{𝕜 : Type u_1}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
(U : Submodule 𝕜 E)
[HasOrthogonalProjection U]
:
orthogonalProjection' U = U.subtypeL.comp (orthogonalProjection U)
theorem
orthogonal_projection'_eq_linear_proj
{E : Type u_2}
{𝕜 : Type u_1}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
{K : Submodule 𝕜 E}
[HasOrthogonalProjection K]
:
↑(K.subtypeL.comp (orthogonalProjection K)) = K.subtype ∘ₗ K.linearProjOfIsCompl Kᗮ ⋯
theorem
orthogonalProjection'_eq_linear_proj'
{E : Type u_2}
{𝕜 : Type u_1}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
{K : Submodule 𝕜 E}
[HasOrthogonalProjection K]
(x : E)
:
↑(orthogonalProjection' K) x = (K.subtype ∘ₗ K.linearProjOfIsCompl Kᗮ ⋯) x