Documentation

Mathlib.Algebra.Algebra.Pi

The R-algebra structure on families of R-algebras #

The R-algebra structure on Π i : I, A i when each A i is an R-algebra.

Main definitions #

instance Pi.algebra (ι : Type u_1) {R : Type u_2} (A : ιType u_3) [CommSemiring R] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra R (A i)] :
Algebra R ((i : ι) → A i)
Equations
theorem Pi.algebraMap_def (ι : Type u_1) {R : Type u_2} (A : ιType u_3) [CommSemiring R] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra R (A i)] (a : R) :
(algebraMap R ((i : ι) → A i)) a = fun (i : ι) => (algebraMap R (A i)) a
@[simp]
theorem Pi.algebraMap_apply (ι : Type u_1) {R : Type u_2} (A : ιType u_3) [CommSemiring R] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra R (A i)] (a : R) (i : ι) :
(algebraMap R ((i : ι) → A i)) a i = (algebraMap R (A i)) a
def Pi.algHom {ι : Type u_1} (R : Type u_2) (A : ιType u_3) [CommSemiring R] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra R (A i)] {B : Type u_4} [Semiring B] [Algebra R B] (g : (i : ι) → B →ₐ[R] A i) :
B →ₐ[R] (i : ι) → A i

A family of algebra homomorphisms g i : B →ₐ[R] A i defines a ring homomorphism Pi.algHom g : B →ₐ[R] Π i, A i given by Pi.algHom g x i = g i x.

Equations
Instances For
    @[simp]
    theorem Pi.algHom_apply {ι : Type u_1} (R : Type u_2) (A : ιType u_3) [CommSemiring R] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra R (A i)] {B : Type u_4} [Semiring B] [Algebra R B] (g : (i : ι) → B →ₐ[R] A i) (x : B) (b : ι) :
    (algHom R A g) x b = (g b) x
    def Pi.evalAlgHom {ι : Type u_1} (R : Type u_2) (A : ιType u_3) [CommSemiring R] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra R (A i)] (i : ι) :
    ((i : ι) → A i) →ₐ[R] A i

    Function.eval as an AlgHom. The name matches Pi.evalRingHom, Pi.evalMonoidHom, etc.

    Equations
    • Pi.evalAlgHom R A i = { toFun := fun (f : (i : ι) → A i) => f i, map_one' := , map_mul' := , map_zero' := , map_add' := , commutes' := }
    Instances For
      @[simp]
      theorem Pi.evalAlgHom_apply {ι : Type u_1} (R : Type u_2) (A : ιType u_3) [CommSemiring R] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra R (A i)] (i : ι) (f : (i : ι) → A i) :
      (evalAlgHom R A i) f = f i
      @[simp]
      theorem Pi.algHom_evalAlgHom {ι : Type u_1} (R : Type u_2) (A : ιType u_3) [CommSemiring R] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra R (A i)] :
      algHom R A (evalAlgHom R A) = AlgHom.id R ((i : ι) → A i)
      theorem Pi.algHom_comp {ι : Type u_1} (R : Type u_2) (A : ιType u_3) [CommSemiring R] [(i : ι) → Semiring (A i)] [(i : ι) → Algebra R (A i)] {B : Type u_4} {C : Type u_5} [Semiring B] [Algebra R B] [Semiring C] [Algebra R C] (g : (i : ι) → C →ₐ[R] A i) (h : B →ₐ[R] C) :
      (algHom R A g).comp h = algHom R A fun (i : ι) => (g i).comp h

      Pi.algHom commutes with composition.

      instance Pi.instAlgebraForall {ι : Type u_1} (A : ιType u_3) [(i : ι) → Semiring (A i)] (S : ιType u_4) [(i : ι) → CommSemiring (S i)] [(i : ι) → Algebra (S i) (A i)] :
      Algebra ((i : ι) → S i) ((i : ι) → A i)
      Equations
      def Pi.constAlgHom (R : Type u_2) [CommSemiring R] (A : Type u_5) (B : Type u_6) [Semiring B] [Algebra R B] :
      B →ₐ[R] AB

      Function.const as an AlgHom. The name matches Pi.constRingHom, Pi.constMonoidHom, etc.

      Equations
      Instances For
        @[simp]
        theorem Pi.constAlgHom_apply (R : Type u_2) [CommSemiring R] (A : Type u_5) (B : Type u_6) [Semiring B] [Algebra R B] (a : B) (a✝ : A) :
        (constAlgHom R A B) a a✝ = Function.const A a a✝
        @[simp]
        theorem Pi.constRingHom_eq_algebraMap (R : Type u_2) [CommSemiring R] (A : Type u_5) :
        constRingHom A R = algebraMap R (AR)

        When R is commutative and permits an algebraMap, Pi.constRingHom is equal to that map.

        @[simp]
        theorem Pi.constAlgHom_eq_algebra_ofId (R : Type u_2) [CommSemiring R] (A : Type u_5) :
        constAlgHom R A R = Algebra.ofId R (AR)
        instance Function.algebra {R : Type u_1} (ι : Type u_2) (A : Type u_3) [CommSemiring R] [Semiring A] [Algebra R A] :
        Algebra R (ιA)

        A special case of Pi.algebra for non-dependent types. Lean struggles to elaborate definitions elsewhere in the library without this.

        Equations
        def AlgHom.compLeft {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) (ι : Type u_4) :
        (ιA) →ₐ[R] ιB

        R-algebra homomorphism between the function spaces ι → A and ι → B, induced by an R-algebra homomorphism f between A and B.

        Equations
        • f.compLeft ι = { toFun := fun (h : ιA) => f h, map_one' := , map_mul' := , map_zero' := , map_add' := , commutes' := }
        Instances For
          @[simp]
          theorem AlgHom.compLeft_apply {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) (ι : Type u_4) (h : ιA) (a✝ : ι) :
          (f.compLeft ι) h a✝ = (f h) a✝
          def AlgEquiv.piCongrRight {R : Type u_1} {ι : Type u_2} {A₁ : ιType u_3} {A₂ : ιType u_4} [CommSemiring R] [(i : ι) → Semiring (A₁ i)] [(i : ι) → Semiring (A₂ i)] [(i : ι) → Algebra R (A₁ i)] [(i : ι) → Algebra R (A₂ i)] (e : (i : ι) → A₁ i ≃ₐ[R] A₂ i) :
          ((i : ι) → A₁ i) ≃ₐ[R] (i : ι) → A₂ i

          A family of algebra equivalences ∀ i, (A₁ i ≃ₐ A₂ i) generates a multiplicative equivalence between Π i, A₁ i and Π i, A₂ i.

          This is the AlgEquiv version of Equiv.piCongrRight, and the dependent version of AlgEquiv.arrowCongr.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem AlgEquiv.piCongrRight_apply {R : Type u_1} {ι : Type u_2} {A₁ : ιType u_3} {A₂ : ιType u_4} [CommSemiring R] [(i : ι) → Semiring (A₁ i)] [(i : ι) → Semiring (A₂ i)] [(i : ι) → Algebra R (A₁ i)] [(i : ι) → Algebra R (A₂ i)] (e : (i : ι) → A₁ i ≃ₐ[R] A₂ i) (x : (i : ι) → A₁ i) (j : ι) :
            (piCongrRight e) x j = (e j) (x j)
            @[simp]
            theorem AlgEquiv.piCongrRight_refl {R : Type u_1} {ι : Type u_2} {A₁ : ιType u_3} [CommSemiring R] [(i : ι) → Semiring (A₁ i)] [(i : ι) → Algebra R (A₁ i)] :
            (piCongrRight fun (i : ι) => refl) = refl
            @[simp]
            theorem AlgEquiv.piCongrRight_symm {R : Type u_1} {ι : Type u_2} {A₁ : ιType u_3} {A₂ : ιType u_4} [CommSemiring R] [(i : ι) → Semiring (A₁ i)] [(i : ι) → Semiring (A₂ i)] [(i : ι) → Algebra R (A₁ i)] [(i : ι) → Algebra R (A₂ i)] (e : (i : ι) → A₁ i ≃ₐ[R] A₂ i) :
            (piCongrRight e).symm = piCongrRight fun (i : ι) => (e i).symm
            @[simp]
            theorem AlgEquiv.piCongrRight_trans {R : Type u_1} {ι : Type u_2} {A₁ : ιType u_3} {A₂ : ιType u_4} {A₃ : ιType u_5} [CommSemiring R] [(i : ι) → Semiring (A₁ i)] [(i : ι) → Semiring (A₂ i)] [(i : ι) → Semiring (A₃ i)] [(i : ι) → Algebra R (A₁ i)] [(i : ι) → Algebra R (A₂ i)] [(i : ι) → Algebra R (A₃ i)] (e₁ : (i : ι) → A₁ i ≃ₐ[R] A₂ i) (e₂ : (i : ι) → A₂ i ≃ₐ[R] A₃ i) :
            (piCongrRight e₁).trans (piCongrRight e₂) = piCongrRight fun (i : ι) => (e₁ i).trans (e₂ i)