Counting walks of a given length #
Main definitions #
walkLengthTwoEquivCommonNeighbors
: bijective correspondence between walks of length two fromu
tov
and common neighbours ofu
andv
. Note thatu
andv
may be the same.finsetWalkLength
: theFinset
of length-n
walks fromu
tov
. This is used to give{p : G.walk u v | p.length = n}
aFintype
instance, and it can also be useful as a recursive description of this set whenV
is finite.
TODO: should this be extended further?
Walks of a given length #
theorem
SimpleGraph.set_walk_length_zero_eq_of_ne
{V : Type u}
(G : SimpleGraph V)
{u : V}
{v : V}
(h : u ≠ v)
:
theorem
SimpleGraph.set_walk_length_succ_eq
{V : Type u}
(G : SimpleGraph V)
(u : V)
(v : V)
(n : ℕ)
:
{p : G.Walk u v | p.length = n.succ} = ⋃ (w : V), ⋃ (h : G.Adj u w), SimpleGraph.Walk.cons h '' {p' : G.Walk w v | p'.length = n}
def
SimpleGraph.walkLengthTwoEquivCommonNeighbors
{V : Type u}
(G : SimpleGraph V)
(u : V)
(v : V)
:
Walks of length two from u
to v
correspond bijectively to common neighbours of u
and v
.
Note that u
and v
may be the same.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SimpleGraph.walkLengthTwoEquivCommonNeighbors_apply_coe
{V : Type u}
(G : SimpleGraph V)
(u : V)
(v : V)
(p : { p : G.Walk u v // p.length = 2 })
:
↑((G.walkLengthTwoEquivCommonNeighbors u v) p) = (↑p).getVert 1
@[simp]
theorem
SimpleGraph.walkLengthTwoEquivCommonNeighbors_symm_apply_coe
{V : Type u}
(G : SimpleGraph V)
(u : V)
(v : V)
(w : ↑(G.commonNeighbors u v))
:
↑((G.walkLengthTwoEquivCommonNeighbors u v).symm w) = (SimpleGraph.Adj.toWalk ⋯).concat ⋯
def
SimpleGraph.finsetWalkLength
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(n : ℕ)
(u : V)
(v : V)
:
Finset (G.Walk u v)
The Finset
of length-n
walks from u
to v
.
This is used to give {p : G.walk u v | p.length = n}
a Fintype
instance, and it
can also be useful as a recursive description of this set when V
is finite.
See SimpleGraph.coe_finsetWalkLength_eq
for the relationship between this Finset
and
the set of length-n
walks.
Equations
Instances For
theorem
SimpleGraph.coe_finsetWalkLength_eq
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(n : ℕ)
(u : V)
(v : V)
:
theorem
SimpleGraph.mem_finsetWalkLength_iff
{V : Type u}
{G : SimpleGraph V}
[DecidableEq V]
[G.LocallyFinite]
{n : ℕ}
{u : V}
{v : V}
{p : G.Walk u v}
:
def
SimpleGraph.finsetWalkLengthLT
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(n : ℕ)
(u : V)
(v : V)
:
Finset (G.Walk u v)
The Finset
of walks from u
to v
with length less than n
. See finsetWalkLength
for
context. In particular, we use this definition for SimpleGraph.Path.instFintype
. -
Equations
- G.finsetWalkLengthLT n u v = (Finset.range n).disjiUnion (fun (l : ℕ) => G.finsetWalkLength l u v) ⋯
Instances For
theorem
SimpleGraph.coe_finsetWalkLengthLT_eq
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(n : ℕ)
(u : V)
(v : V)
:
theorem
SimpleGraph.mem_finsetWalkLengthLT_iff
{V : Type u}
{G : SimpleGraph V}
[DecidableEq V]
[G.LocallyFinite]
{n : ℕ}
{u : V}
{v : V}
{p : G.Walk u v}
:
instance
SimpleGraph.fintypeSetWalkLength
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(u : V)
(v : V)
(n : ℕ)
:
Equations
- G.fintypeSetWalkLength u v n = Fintype.ofFinset (G.finsetWalkLength n u v) ⋯
instance
SimpleGraph.fintypeSubtypeWalkLength
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(u : V)
(v : V)
(n : ℕ)
:
Equations
- G.fintypeSubtypeWalkLength u v n = G.fintypeSetWalkLength u v n
theorem
SimpleGraph.set_walk_length_toFinset_eq
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(n : ℕ)
(u : V)
(v : V)
:
theorem
SimpleGraph.card_set_walk_length_eq
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(u : V)
(v : V)
(n : ℕ)
:
Fintype.card ↑{p : G.Walk u v | p.length = n} = (G.finsetWalkLength n u v).card
instance
SimpleGraph.fintypeSetWalkLengthLT
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(u : V)
(v : V)
(n : ℕ)
:
Equations
- G.fintypeSetWalkLengthLT u v n = Fintype.ofFinset (G.finsetWalkLengthLT n u v) ⋯
instance
SimpleGraph.fintypeSubtypeWalkLengthLT
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(u : V)
(v : V)
(n : ℕ)
:
Equations
- G.fintypeSubtypeWalkLengthLT u v n = G.fintypeSetWalkLengthLT u v n
instance
SimpleGraph.fintypeSetPathLength
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(u : V)
(v : V)
(n : ℕ)
:
Equations
- G.fintypeSetPathLength u v n = Fintype.ofFinset (Finset.filter (fun (w : G.Walk u v) => w.IsPath) (G.finsetWalkLength n u v)) ⋯
instance
SimpleGraph.fintypeSubtypePathLength
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(u : V)
(v : V)
(n : ℕ)
:
Equations
- G.fintypeSubtypePathLength u v n = G.fintypeSetPathLength u v n
instance
SimpleGraph.fintypeSetPathLengthLT
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(u : V)
(v : V)
(n : ℕ)
:
Equations
- G.fintypeSetPathLengthLT u v n = Fintype.ofFinset (Finset.filter (fun (w : G.Walk u v) => w.IsPath) (G.finsetWalkLengthLT n u v)) ⋯
instance
SimpleGraph.fintypeSubtypePathLengthLT
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[G.LocallyFinite]
(u : V)
(v : V)
(n : ℕ)
:
Equations
- G.fintypeSubtypePathLengthLT u v n = G.fintypeSetPathLengthLT u v n
theorem
SimpleGraph.reachable_iff_exists_finsetWalkLength_nonempty
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[Fintype V]
[DecidableRel G.Adj]
(u : V)
(v : V)
:
G.Reachable u v ↔ ∃ (n : Fin (Fintype.card V)), (G.finsetWalkLength (↑n) u v).Nonempty
instance
SimpleGraph.instDecidableRelReachable
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[Fintype V]
[DecidableRel G.Adj]
:
DecidableRel G.Reachable
Equations
- G.instDecidableRelReachable u v = decidable_of_iff' (∃ (n : Fin (Fintype.card V)), (G.finsetWalkLength (↑n) u v).Nonempty) ⋯
instance
SimpleGraph.instFintypeConnectedComponent
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[Fintype V]
[DecidableRel G.Adj]
:
Fintype G.ConnectedComponent
Equations
- G.instFintypeConnectedComponent = Quotient.fintype G.reachableSetoid
instance
SimpleGraph.instDecidablePreconnected
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[Fintype V]
[DecidableRel G.Adj]
:
Decidable G.Preconnected
Equations
- G.instDecidablePreconnected = inferInstanceAs (Decidable (∀ (u v : V), G.Reachable u v))
instance
SimpleGraph.instDecidableConnected
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[Fintype V]
[DecidableRel G.Adj]
:
Decidable G.Connected
Equations
- G.instDecidableConnected = ⋯.mpr (⋯.mpr inferInstance)
instance
SimpleGraph.Path.instFintype
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[Fintype V]
[DecidableRel G.Adj]
{u : V}
{v : V}
:
Fintype (G.Path u v)
Equations
- One or more equations did not get rendered due to their size.
instance
SimpleGraph.instDecidableMemSupp
{V : Type u}
(G : SimpleGraph V)
[DecidableEq V]
[Fintype V]
[DecidableRel G.Adj]
(c : G.ConnectedComponent)
(v : V)
:
Equations
- G.instDecidableMemSupp c v = SimpleGraph.ConnectedComponent.recOn c (fun (w : V) => decidable_of_iff (G.Reachable v w) ⋯) ⋯
theorem
SimpleGraph.disjiUnion_supp_toFinset_eq_supp_toFinset
{V : Type u}
{G : SimpleGraph V}
[DecidableEq V]
[Fintype V]
[DecidableRel G.Adj]
{G' : SimpleGraph V}
(h : G ≤ G')
(c' : G'.ConnectedComponent)
[Fintype ↑c'.supp]
[DecidablePred fun (c : G.ConnectedComponent) => c.supp ⊆ c'.supp]
:
(Finset.filter (fun (c : G.ConnectedComponent) => c.supp ⊆ c'.supp) Finset.univ).disjiUnion
(fun (c : G.ConnectedComponent) => c.supp.toFinset) ⋯ = c'.supp.toFinset
theorem
SimpleGraph.ConnectedComponent.odd_card_supp_iff_odd_subcomponents
{V : Type u}
(G : SimpleGraph V)
[Finite V]
{G' : SimpleGraph V}
(h : G ≤ G')
(c' : G'.ConnectedComponent)
: