Documentation

Mathlib.Combinatorics.SimpleGraph.Connectivity.WalkCounting

Counting walks of a given length #

Main definitions #

TODO: should this be extended further?

Walks of a given length #

theorem SimpleGraph.set_walk_self_length_zero_eq {V : Type u} (G : SimpleGraph V) (u : V) :
{p : G.Walk u u | p.length = 0} = {SimpleGraph.Walk.nil}
theorem SimpleGraph.set_walk_length_zero_eq_of_ne {V : Type u} (G : SimpleGraph V) {u : V} {v : V} (h : u v) :
{p : G.Walk u v | p.length = 0} =
theorem SimpleGraph.set_walk_length_succ_eq {V : Type u} (G : SimpleGraph V) (u : V) (v : V) (n : ) :
{p : G.Walk u v | p.length = n.succ} = ⋃ (w : V), ⋃ (h : G.Adj u w), SimpleGraph.Walk.cons h '' {p' : G.Walk w v | p'.length = n}
def SimpleGraph.walkLengthTwoEquivCommonNeighbors {V : Type u} (G : SimpleGraph V) (u : V) (v : V) :
{ p : G.Walk u v // p.length = 2 } (G.commonNeighbors u v)

Walks of length two from u to v correspond bijectively to common neighbours of u and v. Note that u and v may be the same.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem SimpleGraph.walkLengthTwoEquivCommonNeighbors_apply_coe {V : Type u} (G : SimpleGraph V) (u : V) (v : V) (p : { p : G.Walk u v // p.length = 2 }) :
    ((G.walkLengthTwoEquivCommonNeighbors u v) p) = (↑p).getVert 1
    @[simp]
    theorem SimpleGraph.walkLengthTwoEquivCommonNeighbors_symm_apply_coe {V : Type u} (G : SimpleGraph V) (u : V) (v : V) (w : (G.commonNeighbors u v)) :
    ((G.walkLengthTwoEquivCommonNeighbors u v).symm w) = (SimpleGraph.Adj.toWalk ).concat
    def SimpleGraph.finsetWalkLength {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (n : ) (u : V) (v : V) :
    Finset (G.Walk u v)

    The Finset of length-n walks from u to v. This is used to give {p : G.walk u v | p.length = n} a Fintype instance, and it can also be useful as a recursive description of this set when V is finite.

    See SimpleGraph.coe_finsetWalkLength_eq for the relationship between this Finset and the set of length-n walks.

    Equations
    • One or more equations did not get rendered due to their size.
    • G.finsetWalkLength 0 u v = if h : u = v then {SimpleGraph.Walk.nil} else
    Instances For
      theorem SimpleGraph.coe_finsetWalkLength_eq {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (n : ) (u : V) (v : V) :
      (G.finsetWalkLength n u v) = {p : G.Walk u v | p.length = n}
      theorem SimpleGraph.mem_finsetWalkLength_iff {V : Type u} {G : SimpleGraph V} [DecidableEq V] [G.LocallyFinite] {n : } {u : V} {v : V} {p : G.Walk u v} :
      p G.finsetWalkLength n u v p.length = n
      def SimpleGraph.finsetWalkLengthLT {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (n : ) (u : V) (v : V) :
      Finset (G.Walk u v)

      The Finset of walks from u to v with length less than n. See finsetWalkLength for context. In particular, we use this definition for SimpleGraph.Path.instFintype. -

      Equations
      • G.finsetWalkLengthLT n u v = (Finset.range n).disjiUnion (fun (l : ) => G.finsetWalkLength l u v)
      Instances For
        theorem SimpleGraph.coe_finsetWalkLengthLT_eq {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (n : ) (u : V) (v : V) :
        (G.finsetWalkLengthLT n u v) = {p : G.Walk u v | p.length < n}
        theorem SimpleGraph.mem_finsetWalkLengthLT_iff {V : Type u} {G : SimpleGraph V} [DecidableEq V] [G.LocallyFinite] {n : } {u : V} {v : V} {p : G.Walk u v} :
        p G.finsetWalkLengthLT n u v p.length < n
        instance SimpleGraph.fintypeSetWalkLength {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (u : V) (v : V) (n : ) :
        Fintype {p : G.Walk u v | p.length = n}
        Equations
        instance SimpleGraph.fintypeSubtypeWalkLength {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (u : V) (v : V) (n : ) :
        Fintype { p : G.Walk u v // p.length = n }
        Equations
        • G.fintypeSubtypeWalkLength u v n = G.fintypeSetWalkLength u v n
        theorem SimpleGraph.set_walk_length_toFinset_eq {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (n : ) (u : V) (v : V) :
        {p : G.Walk u v | p.length = n}.toFinset = G.finsetWalkLength n u v
        theorem SimpleGraph.card_set_walk_length_eq {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (u : V) (v : V) (n : ) :
        Fintype.card {p : G.Walk u v | p.length = n} = (G.finsetWalkLength n u v).card
        instance SimpleGraph.fintypeSetWalkLengthLT {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (u : V) (v : V) (n : ) :
        Fintype {p : G.Walk u v | p.length < n}
        Equations
        instance SimpleGraph.fintypeSubtypeWalkLengthLT {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (u : V) (v : V) (n : ) :
        Fintype { p : G.Walk u v // p.length < n }
        Equations
        • G.fintypeSubtypeWalkLengthLT u v n = G.fintypeSetWalkLengthLT u v n
        instance SimpleGraph.fintypeSetPathLength {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (u : V) (v : V) (n : ) :
        Fintype {p : G.Walk u v | p.IsPath p.length = n}
        Equations
        instance SimpleGraph.fintypeSubtypePathLength {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (u : V) (v : V) (n : ) :
        Fintype { p : G.Walk u v // p.IsPath p.length = n }
        Equations
        • G.fintypeSubtypePathLength u v n = G.fintypeSetPathLength u v n
        instance SimpleGraph.fintypeSetPathLengthLT {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (u : V) (v : V) (n : ) :
        Fintype {p : G.Walk u v | p.IsPath p.length < n}
        Equations
        instance SimpleGraph.fintypeSubtypePathLengthLT {V : Type u} (G : SimpleGraph V) [DecidableEq V] [G.LocallyFinite] (u : V) (v : V) (n : ) :
        Fintype { p : G.Walk u v // p.IsPath p.length < n }
        Equations
        • G.fintypeSubtypePathLengthLT u v n = G.fintypeSetPathLengthLT u v n
        theorem SimpleGraph.reachable_iff_exists_finsetWalkLength_nonempty {V : Type u} (G : SimpleGraph V) [DecidableEq V] [Fintype V] [DecidableRel G.Adj] (u : V) (v : V) :
        G.Reachable u v ∃ (n : Fin (Fintype.card V)), (G.finsetWalkLength (↑n) u v).Nonempty
        Equations
        instance SimpleGraph.instFintypeConnectedComponent {V : Type u} (G : SimpleGraph V) [DecidableEq V] [Fintype V] [DecidableRel G.Adj] :
        Fintype G.ConnectedComponent
        Equations
        instance SimpleGraph.instDecidablePreconnected {V : Type u} (G : SimpleGraph V) [DecidableEq V] [Fintype V] [DecidableRel G.Adj] :
        Decidable G.Preconnected
        Equations
        instance SimpleGraph.instDecidableConnected {V : Type u} (G : SimpleGraph V) [DecidableEq V] [Fintype V] [DecidableRel G.Adj] :
        Decidable G.Connected
        Equations
        • G.instDecidableConnected = .mpr (.mpr inferInstance)
        instance SimpleGraph.Path.instFintype {V : Type u} (G : SimpleGraph V) [DecidableEq V] [Fintype V] [DecidableRel G.Adj] {u : V} {v : V} :
        Fintype (G.Path u v)
        Equations
        • One or more equations did not get rendered due to their size.
        instance SimpleGraph.instDecidableMemSupp {V : Type u} (G : SimpleGraph V) [DecidableEq V] [Fintype V] [DecidableRel G.Adj] (c : G.ConnectedComponent) (v : V) :
        Decidable (v c.supp)
        Equations
        theorem SimpleGraph.disjiUnion_supp_toFinset_eq_supp_toFinset {V : Type u} {G : SimpleGraph V} [DecidableEq V] [Fintype V] [DecidableRel G.Adj] {G' : SimpleGraph V} (h : G G') (c' : G'.ConnectedComponent) [Fintype c'.supp] [DecidablePred fun (c : G.ConnectedComponent) => c.supp c'.supp] :
        (Finset.filter (fun (c : G.ConnectedComponent) => c.supp c'.supp) Finset.univ).disjiUnion (fun (c : G.ConnectedComponent) => c.supp.toFinset) = c'.supp.toFinset
        theorem SimpleGraph.ConnectedComponent.odd_card_supp_iff_odd_subcomponents {V : Type u} (G : SimpleGraph V) [Finite V] {G' : SimpleGraph V} (h : G G') (c' : G'.ConnectedComponent) :
        Odd (Nat.card c'.supp) Odd (Nat.card {c : G.ConnectedComponent | c.supp c'.supp Odd (Nat.card c.supp)})
        theorem SimpleGraph.odd_card_iff_odd_components {V : Type u} (G : SimpleGraph V) [Finite V] :
        Odd (Nat.card V) Odd (Nat.card {c : G.ConnectedComponent | Odd (Nat.card c.supp)})