Documentation

Mathlib.Order.Interval.Set.ProjIcc

Projection of a line onto a closed interval #

Given a linearly ordered type α, in this file we define

We also prove some trivial properties of these maps.

def Set.projIci {α : Type u_1} [LinearOrder α] (a x : α) :
(Ici a)

Projection of α to the closed interval [a, ∞).

Equations
def Set.projIic {α : Type u_1} [LinearOrder α] (b x : α) :
(Iic b)

Projection of α to the closed interval (-∞, b].

Equations
def Set.projIcc {α : Type u_1} [LinearOrder α] (a b : α) (h : a b) (x : α) :
(Icc a b)

Projection of α to the closed interval [a, b].

Equations
theorem Set.coe_projIci {α : Type u_1} [LinearOrder α] (a x : α) :
(projIci a x) = a x
theorem Set.coe_projIic {α : Type u_1} [LinearOrder α] (b x : α) :
(projIic b x) = b x
theorem Set.coe_projIcc {α : Type u_1} [LinearOrder α] (a b : α) (h : a b) (x : α) :
(projIcc a b h x) = a b x
theorem Set.projIci_of_le {α : Type u_1} [LinearOrder α] {a x : α} (hx : x a) :
projIci a x = a,
theorem Set.projIic_of_le {α : Type u_1} [LinearOrder α] {b x : α} (hx : b x) :
projIic b x = b,
theorem Set.projIcc_of_le_left {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) {x : α} (hx : x a) :
projIcc a b h x = a,
theorem Set.projIcc_of_right_le {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) {x : α} (hx : b x) :
projIcc a b h x = b,
@[simp]
theorem Set.projIci_self {α : Type u_1} [LinearOrder α] (a : α) :
projIci a a = a,
@[simp]
theorem Set.projIic_self {α : Type u_1} [LinearOrder α] (b : α) :
projIic b b = b,
@[simp]
theorem Set.projIcc_left {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) :
projIcc a b h a = a,
@[simp]
theorem Set.projIcc_right {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) :
projIcc a b h b = b,
theorem Set.projIci_eq_self {α : Type u_1} [LinearOrder α] {a x : α} :
projIci a x = a, x a
theorem Set.projIic_eq_self {α : Type u_1} [LinearOrder α] {b x : α} :
projIic b x = b, b x
theorem Set.projIcc_eq_left {α : Type u_1} [LinearOrder α] {a b x : α} (h : a < b) :
projIcc a b x = a, x a
theorem Set.projIcc_eq_right {α : Type u_1} [LinearOrder α] {a b x : α} (h : a < b) :
projIcc a b x = b, b x
theorem Set.projIci_of_mem {α : Type u_1} [LinearOrder α] {a x : α} (hx : x Ici a) :
projIci a x = x, hx
theorem Set.projIic_of_mem {α : Type u_1} [LinearOrder α] {b x : α} (hx : x Iic b) :
projIic b x = x, hx
theorem Set.projIcc_of_mem {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) {x : α} (hx : x Icc a b) :
projIcc a b h x = x, hx
@[simp]
theorem Set.projIci_coe {α : Type u_1} [LinearOrder α] {a : α} (x : (Ici a)) :
projIci a x = x
@[simp]
theorem Set.projIic_coe {α : Type u_1} [LinearOrder α] {b : α} (x : (Iic b)) :
projIic b x = x
@[simp]
theorem Set.projIcc_val {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) (x : (Icc a b)) :
projIcc a b h x = x
theorem Set.projIci_surjOn {α : Type u_1} [LinearOrder α] {a : α} :
theorem Set.projIic_surjOn {α : Type u_1} [LinearOrder α] {b : α} :
theorem Set.projIcc_surjOn {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) :
SurjOn (projIcc a b h) (Icc a b) univ
theorem Set.projIcc_surjective {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) :
@[simp]
theorem Set.range_projIci {α : Type u_1} [LinearOrder α] {a : α} :
@[simp]
theorem Set.range_projIic {α : Type u_1} [LinearOrder α] {a : α} :
@[simp]
theorem Set.range_projIcc {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) :
theorem Set.monotone_projIci {α : Type u_1} [LinearOrder α] {a : α} :
theorem Set.monotone_projIic {α : Type u_1} [LinearOrder α] {a : α} :
theorem Set.monotone_projIcc {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) :
theorem Set.strictMonoOn_projIci {α : Type u_1} [LinearOrder α] {a : α} :
theorem Set.strictMonoOn_projIic {α : Type u_1} [LinearOrder α] {b : α} :
theorem Set.strictMonoOn_projIcc {α : Type u_1} [LinearOrder α] {a b : α} (h : a b) :
StrictMonoOn (projIcc a b h) (Icc a b)
def Set.IciExtend {α : Type u_1} {β : Type u_2} [LinearOrder α] {a : α} (f : (Ici a)β) :
αβ

Extend a function [a, ∞) → β to a map α → β.

Equations
def Set.IicExtend {α : Type u_1} {β : Type u_2} [LinearOrder α] {b : α} (f : (Iic b)β) :
αβ

Extend a function (-∞, b] → β to a map α → β.

Equations
def Set.IccExtend {α : Type u_1} {β : Type u_2} [LinearOrder α] {a b : α} (h : a b) (f : (Icc a b)β) :
αβ

Extend a function [a, b] → β to a map α → β.

Equations
theorem Set.IciExtend_apply {α : Type u_1} {β : Type u_2} [LinearOrder α] {a : α} (f : (Ici a)β) (x : α) :
IciExtend f x = f a x,
theorem Set.IicExtend_apply {α : Type u_1} {β : Type u_2} [LinearOrder α] {b : α} (f : (Iic b)β) (x : α) :
IicExtend f x = f b x,
theorem Set.IccExtend_apply {α : Type u_1} {β : Type u_2} [LinearOrder α] {a b : α} (h : a b) (f : (Icc a b)β) (x : α) :
IccExtend h f x = f a b x,
@[simp]
theorem Set.range_IciExtend {α : Type u_1} {β : Type u_2} [LinearOrder α] {a : α} (f : (Ici a)β) :
@[simp]
theorem Set.range_IicExtend {α : Type u_1} {β : Type u_2} [LinearOrder α] {b : α} (f : (Iic b)β) :
@[simp]
theorem Set.IccExtend_range {α : Type u_1} {β : Type u_2} [LinearOrder α] {a b : α} (h : a b) (f : (Icc a b)β) :
theorem Set.IciExtend_of_le {α : Type u_1} {β : Type u_2} [LinearOrder α] {a x : α} (f : (Ici a)β) (hx : x a) :
IciExtend f x = f a,
theorem Set.IicExtend_of_le {α : Type u_1} {β : Type u_2} [LinearOrder α] {b x : α} (f : (Iic b)β) (hx : b x) :
IicExtend f x = f b,
theorem Set.IccExtend_of_le_left {α : Type u_1} {β : Type u_2} [LinearOrder α] {a b : α} (h : a b) {x : α} (f : (Icc a b)β) (hx : x a) :
IccExtend h f x = f a,
theorem Set.IccExtend_of_right_le {α : Type u_1} {β : Type u_2} [LinearOrder α] {a b : α} (h : a b) {x : α} (f : (Icc a b)β) (hx : b x) :
IccExtend h f x = f b,
@[simp]
theorem Set.IciExtend_self {α : Type u_1} {β : Type u_2} [LinearOrder α] {a : α} (f : (Ici a)β) :
IciExtend f a = f a,
@[simp]
theorem Set.IicExtend_self {α : Type u_1} {β : Type u_2} [LinearOrder α] {b : α} (f : (Iic b)β) :
IicExtend f b = f b,
@[simp]
theorem Set.IccExtend_left {α : Type u_1} {β : Type u_2} [LinearOrder α] {a b : α} (h : a b) (f : (Icc a b)β) :
IccExtend h f a = f a,
@[simp]
theorem Set.IccExtend_right {α : Type u_1} {β : Type u_2} [LinearOrder α] {a b : α} (h : a b) (f : (Icc a b)β) :
IccExtend h f b = f b,
theorem Set.IciExtend_of_mem {α : Type u_1} {β : Type u_2} [LinearOrder α] {a x : α} (f : (Ici a)β) (hx : x Ici a) :
IciExtend f x = f x, hx
theorem Set.IicExtend_of_mem {α : Type u_1} {β : Type u_2} [LinearOrder α] {b x : α} (f : (Iic b)β) (hx : x Iic b) :
IicExtend f x = f x, hx
theorem Set.IccExtend_of_mem {α : Type u_1} {β : Type u_2} [LinearOrder α] {a b : α} (h : a b) {x : α} (f : (Icc a b)β) (hx : x Icc a b) :
IccExtend h f x = f x, hx
@[simp]
theorem Set.IciExtend_coe {α : Type u_1} {β : Type u_2} [LinearOrder α] {a : α} (f : (Ici a)β) (x : (Ici a)) :
IciExtend f x = f x
@[simp]
theorem Set.IicExtend_coe {α : Type u_1} {β : Type u_2} [LinearOrder α] {b : α} (f : (Iic b)β) (x : (Iic b)) :
IicExtend f x = f x
@[simp]
theorem Set.IccExtend_val {α : Type u_1} {β : Type u_2} [LinearOrder α] {a b : α} (h : a b) (f : (Icc a b)β) (x : (Icc a b)) :
IccExtend h f x = f x
theorem Set.IccExtend_eq_self {α : Type u_1} {β : Type u_2} [LinearOrder α] {a b : α} (h : a b) (f : αβ) (ha : x < a, f x = f a) (hb : ∀ (x : α), b < xf x = f b) :

If f : α → β is a constant both on (,a] and on [b,+), then the extension of this function from [a,b] to the whole line is equal to the original function.

theorem Monotone.IciExtend {α : Type u_1} {β : Type u_2} [LinearOrder α] [Preorder β] {a : α} {f : (Set.Ici a)β} (hf : Monotone f) :
theorem Monotone.IicExtend {α : Type u_1} {β : Type u_2} [LinearOrder α] [Preorder β] {b : α} {f : (Set.Iic b)β} (hf : Monotone f) :
theorem Monotone.IccExtend {α : Type u_1} {β : Type u_2} [LinearOrder α] [Preorder β] {a b : α} (h : a b) {f : (Set.Icc a b)β} (hf : Monotone f) :
theorem StrictMono.strictMonoOn_IciExtend {α : Type u_1} {β : Type u_2} [LinearOrder α] [Preorder β] {a : α} {f : (Set.Ici a)β} (hf : StrictMono f) :
theorem StrictMono.strictMonoOn_IicExtend {α : Type u_1} {β : Type u_2} [LinearOrder α] [Preorder β] {b : α} {f : (Set.Iic b)β} (hf : StrictMono f) :
theorem StrictMono.strictMonoOn_IccExtend {α : Type u_1} {β : Type u_2} [LinearOrder α] [Preorder β] {a b : α} (h : a b) {f : (Set.Icc a b)β} (hf : StrictMono f) :
theorem Set.OrdConnected.IciExtend {α : Type u_1} [LinearOrder α] {a : α} {s : Set (Ici a)} (hs : s.OrdConnected) :
{x : α | IciExtend (fun (x : (Ici a)) => x s) x}.OrdConnected
theorem Set.OrdConnected.IicExtend {α : Type u_1} [LinearOrder α] {b : α} {s : Set (Iic b)} (hs : s.OrdConnected) :
{x : α | IicExtend (fun (x : (Iic b)) => x s) x}.OrdConnected
theorem Set.OrdConnected.restrict {α : Type u_1} [LinearOrder α] {s t : Set α} (hs : s.OrdConnected) :
{x : t | t.restrict (fun (x : α) => x s) x}.OrdConnected