theorem
TensorProduct.map_left_up
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[CommSemiring R]
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(f : A →ₗ[R] B)
(g : C →ₗ[R] D)
:
theorem
TensorProduct.map_right_down
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[CommSemiring R]
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(f : A →ₗ[R] B)
(g : C →ₗ[R] D)
:
Alias of TensorProduct.map_left_up
.
theorem
TensorProduct.map_right_up
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[CommSemiring R]
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(f : A →ₗ[R] B)
(g : C →ₗ[R] D)
:
theorem
TensorProduct.map_left_down
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[CommSemiring R]
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(f : A →ₗ[R] B)
(g : C →ₗ[R] D)
:
Alias of TensorProduct.map_right_up
.
theorem
Algebra.linearMap_mul'_assoc
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
:
LinearMap.mul' R A ∘ₗ _root_.TensorProduct.map (LinearMap.mul' R A) LinearMap.id = LinearMap.mul' R A ∘ₗ _root_.TensorProduct.map LinearMap.id (LinearMap.mul' R A) ∘ₗ ↑(_root_.TensorProduct.assoc R A A A)
theorem
Algebra.assoc
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
:
LinearMap.mul' R A ∘ₗ _root_.TensorProduct.map (LinearMap.mul' R A) LinearMap.id = LinearMap.mul' R A ∘ₗ _root_.TensorProduct.map LinearMap.id (LinearMap.mul' R A) ∘ₗ ↑(_root_.TensorProduct.assoc R A A A)
Alias of Algebra.linearMap_mul'_assoc
.
theorem
Algebra.assoc'
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
:
LinearMap.mul' R A ∘ₗ LinearMap.rTensor A (LinearMap.mul' R A) = LinearMap.mul' R A ∘ₗ LinearMap.lTensor A (LinearMap.mul' R A) ∘ₗ ↑(_root_.TensorProduct.assoc R A A A)
theorem
Algebra.mul_comp_rTensor_mul
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
:
LinearMap.mul' R A ∘ₗ LinearMap.rTensor A (LinearMap.mul' R A) = LinearMap.mul' R A ∘ₗ LinearMap.lTensor A (LinearMap.mul' R A) ∘ₗ ↑(_root_.TensorProduct.assoc R A A A)
Alias of Algebra.assoc'
.
theorem
Algebra.mul_comp_rTensor_unit
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
:
theorem
Algebra.mul_comp_rTensor_unit_comp_lid_symm
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
:
LinearMap.mul' R A ∘ₗ LinearMap.rTensor A (Algebra.linearMap R A) ∘ₗ ↑(_root_.TensorProduct.lid R A).symm = LinearMap.id
theorem
Algebra.mul_comp_lTensor_unit
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
:
theorem
Algebra.mul_comp_lTensor_unit_comp_rid_symm
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
:
LinearMap.mul' R A ∘ₗ LinearMap.lTensor A (Algebra.linearMap R A) ∘ₗ ↑(_root_.TensorProduct.rid R A).symm = LinearMap.id
theorem
counit_comp_mul_comp_rTensor_unit
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Coalgebra R A]
:
theorem
counit_comp_mul_lTensor_unit
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Coalgebra R A]
:
theorem
lTensor_counit_comp_comul_unit
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Coalgebra R A]
:
theorem
Coalgebra.rTensor_counit_comp_comul'
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
[AddCommMonoid A]
[Module R A]
[Coalgebra R A]
:
theorem
TensorProduct.assoc_symm_comp_rTensor
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(x : A →ₗ[R] D)
:
↑(TensorProduct.assoc R D B C).symm ∘ₗ LinearMap.rTensor (TensorProduct R B C) x = LinearMap.rTensor C (LinearMap.rTensor B x) ∘ₗ ↑(TensorProduct.assoc R A B C).symm
theorem
TensorProduct.assoc_symm_comp_lTensor_lTensor
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(x : A →ₗ[R] D)
:
↑(TensorProduct.assoc R B C D).symm ∘ₗ LinearMap.lTensor B (LinearMap.lTensor C x) = LinearMap.lTensor (TensorProduct R B C) x ∘ₗ ↑(TensorProduct.assoc R B C A).symm
theorem
TensorProduct.rTensor_lTensor_comp_assoc_symm
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(x : A →ₗ[R] D)
:
LinearMap.rTensor C (LinearMap.lTensor B x) ∘ₗ ↑(TensorProduct.assoc R B A C).symm = ↑(TensorProduct.assoc R B D C).symm ∘ₗ LinearMap.lTensor B (LinearMap.rTensor C x)
theorem
TensorProduct.assoc_comp_rTensor_rTensor
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(x : A →ₗ[R] D)
:
↑(TensorProduct.assoc R D B C) ∘ₗ LinearMap.rTensor C (LinearMap.rTensor B x) = LinearMap.rTensor (TensorProduct R B C) x ∘ₗ ↑(TensorProduct.assoc R A B C)
theorem
TensorProduct.ext_fourfold''
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
{E : Type u_6}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[AddCommMonoid E]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
[Module R E]
{f g : TensorProduct R A (TensorProduct R B (TensorProduct R C D)) →ₗ[R] E}
:
theorem
TensorProduct.assoc_comp_rTensor_assoc_symm_comp_assoc_symm_comp_lTensor_assoc_symm
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
:
↑(TensorProduct.assoc R (TensorProduct R A B) C D) ∘ₗ LinearMap.rTensor D ↑(TensorProduct.assoc R A B C).symm ∘ₗ ↑(TensorProduct.assoc R A (TensorProduct R B C) D).symm ∘ₗ LinearMap.lTensor A ↑(TensorProduct.assoc R B C D).symm = ↑(TensorProduct.assoc R A B (TensorProduct R C D)).symm
theorem
TensorProduct.rTensor_comp_rTensor
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(x : B →ₗ[R] C)
(y : A →ₗ[R] B)
:
theorem
TensorProduct.lTensor_comp_lTensor
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(x : B →ₗ[R] C)
(y : A →ₗ[R] B)
:
theorem
lid_tensor
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
{B : Type u_3}
[AddCommMonoid A]
[Module R A]
[AddCommMonoid B]
[Module R B]
:
↑(TensorProduct.lid R (TensorProduct R A B)) = LinearMap.rTensor B ↑(TensorProduct.lid R A) ∘ₗ ↑(TensorProduct.assoc R R A B).symm
theorem
rTensor_comp_lTensor'
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(x : A →ₗ[R] B)
(y : C →ₗ[R] D)
:
theorem
lTensor_mul_comp_rTensor_comul_of
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
[Semiring A]
[Algebra R A]
[Coalgebra R A]
(h :
LinearMap.lTensor A (LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A CoalgebraStruct.comul = LinearMap.rTensor A (LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A).symm ∘ₗ LinearMap.lTensor A CoalgebraStruct.comul)
:
LinearMap.lTensor A (LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A CoalgebraStruct.comul = CoalgebraStruct.comul ∘ₗ LinearMap.mul' R A
if (id ⊗ mul) (comul ⊗ id) = (mul ⊗ id) (id ⊗ comul)
,
then (id ⊗ mul) (comul ⊗ id) = comul ∘ mul
.
This is sometimes referred to as the Frobenius equations.
theorem
counit_comp_mul_comp_rTensor_unit_eq_counit
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
[Semiring A]
[Algebra R A]
[Coalgebra R A]
:
theorem
counit_comp_mul_comp_lTensor_unit_eq_counit
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
[Semiring A]
[Algebra R A]
[Coalgebra R A]
:
theorem
rTensor_counit_comp_comul_comp_unit_eq_unit
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
[Semiring A]
[Algebra R A]
[Coalgebra R A]
:
theorem
lTensor_counit_comp_comul_comp_unit_eq_unit
{R : Type u_1}
[CommSemiring R]
{A : Type u_2}
[Semiring A]
[Algebra R A]
[Coalgebra R A]
:
class
FrobeniusAlgebra
(R : Type u_3)
(A : Type u_4)
[CommSemiring R]
[Semiring A]
extends Algebra R A, Coalgebra R A :
Type (max u_3 u_4)
- smul : R → A → A
- coassoc : ↑(TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A comul ∘ₗ comul = LinearMap.lTensor A comul ∘ₗ comul
- lTensor_mul_comp_rTensor_comul_commute : LinearMap.lTensor A (LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A CoalgebraStruct.comul = LinearMap.rTensor A (LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A).symm ∘ₗ LinearMap.lTensor A CoalgebraStruct.comul
Instances
theorem
FrobeniusAlgebra.lTensor_mul_comp_rTensor_comul_eq_comul_comp_mul
{R : Type u_3}
{A : Type u_4}
[CommSemiring R]
[Semiring A]
[FrobeniusAlgebra R A]
:
LinearMap.lTensor A (LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A CoalgebraStruct.comul = CoalgebraStruct.comul ∘ₗ LinearMap.mul' R A
theorem
FrobeniusAlgebra.rTensor_mul_comp_lTensor_comul_eq_comul_comp_mul
{R : Type u_3}
{A : Type u_4}
[CommSemiring R]
[Semiring A]
[FrobeniusAlgebra R A]
:
LinearMap.rTensor A (LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A).symm ∘ₗ LinearMap.lTensor A CoalgebraStruct.comul = CoalgebraStruct.comul ∘ₗ LinearMap.mul' R A
theorem
FrobeniusAlgebra.rTensor_mul_comp_lTensor_comul_unit_eq_comul
{R : Type u_3}
{A : Type u_4}
[CommSemiring R]
[Semiring A]
[FrobeniusAlgebra R A]
:
LinearMap.rTensor A (LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A).symm ∘ₗ LinearMap.lTensor A (CoalgebraStruct.comul ∘ₗ Algebra.linearMap R A) = CoalgebraStruct.comul ∘ₗ ↑(TensorProduct.rid R A)
theorem
FrobeniusAlgebra.lTensor_mul_comp_rTensor_comul_unit
{R : Type u_3}
{A : Type u_4}
[CommSemiring R]
[Semiring A]
[FrobeniusAlgebra R A]
:
LinearMap.lTensor A (LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A (CoalgebraStruct.comul ∘ₗ Algebra.linearMap R A) = CoalgebraStruct.comul ∘ₗ ↑(TensorProduct.lid R A)
theorem
FrobeniusAlgebra.rTensor_counit_mul_comp_lTensor_comul
{R : Type u_3}
{A : Type u_4}
[CommSemiring R]
[Semiring A]
[FrobeniusAlgebra R A]
:
LinearMap.rTensor A (CoalgebraStruct.counit ∘ₗ LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A).symm ∘ₗ LinearMap.lTensor A CoalgebraStruct.comul = ↑(TensorProduct.lid R A).symm ∘ₗ LinearMap.mul' R A
theorem
FrobeniusAlgebra.lTensor_counit_mul_comp_rTensor_comul
{R : Type u_3}
{A : Type u_4}
[CommSemiring R]
[Semiring A]
[FrobeniusAlgebra R A]
:
LinearMap.lTensor A (CoalgebraStruct.counit ∘ₗ LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A CoalgebraStruct.comul = ↑(TensorProduct.rid R A).symm ∘ₗ LinearMap.mul' R A
theorem
FrobeniusAlgebra.rTensor_counit_mul_comp_lTensor_comul_unit
{R : Type u_3}
{A : Type u_4}
[CommSemiring R]
[Semiring A]
[FrobeniusAlgebra R A]
:
LinearMap.rTensor A (CoalgebraStruct.counit ∘ₗ LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A).symm ∘ₗ LinearMap.lTensor A (CoalgebraStruct.comul ∘ₗ Algebra.linearMap R A) = ↑(TensorProduct.comm R A R)
"snake equations" v1
theorem
FrobeniusAlgebra.lTensor_counit_mul_comp_rTensor_comul_unit
{R : Type u_3}
{A : Type u_4}
[CommSemiring R]
[Semiring A]
[FrobeniusAlgebra R A]
:
LinearMap.lTensor A (CoalgebraStruct.counit ∘ₗ LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A (CoalgebraStruct.comul ∘ₗ Algebra.linearMap R A) = ↑(TensorProduct.comm R R A)
"snake equations" v2