Documentation

Monlib.LinearAlgebra.Coalgebra.Lemmas

theorem TensorProduct.map_left_up {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (f : A →ₗ[R] B) (g : C →ₗ[R] D) :
theorem TensorProduct.map_right_down {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (f : A →ₗ[R] B) (g : C →ₗ[R] D) :

Alias of TensorProduct.map_left_up.

theorem TensorProduct.map_right_up {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (f : A →ₗ[R] B) (g : C →ₗ[R] D) :
theorem TensorProduct.map_left_down {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (f : A →ₗ[R] B) (g : C →ₗ[R] D) :

Alias of TensorProduct.map_right_up.

theorem TensorProduct.ext_fourfold'' {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} {E : Type u_6} [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [AddCommMonoid E] [Module R A] [Module R B] [Module R C] [Module R D] [Module R E] {f g : TensorProduct R A (TensorProduct R B (TensorProduct R C D)) →ₗ[R] E} :
(∀ (x : A) (y : B) (z : C) (w : D), f (x ⊗ₜ[R] y ⊗ₜ[R] z ⊗ₜ[R] w) = g (x ⊗ₜ[R] y ⊗ₜ[R] z ⊗ₜ[R] w))f = g
theorem TensorProduct.rTensor_comp_rTensor {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (x : B →ₗ[R] C) (y : A →ₗ[R] B) :
theorem TensorProduct.lTensor_comp_lTensor {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (x : B →ₗ[R] C) (y : A →ₗ[R] B) :
theorem lid_tensor {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] :
theorem rTensor_comp_lTensor' {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (x : A →ₗ[R] B) (y : C →ₗ[R] D) :

if (id ⊗ mul) (comul ⊗ id) = (mul ⊗ id) (id ⊗ comul), then (id ⊗ mul) (comul ⊗ id) = comul ∘ mul.

This is sometimes referred to as the Frobenius equations.