Documentation

Monlib.LinearAlgebra.End

Some obvious lemmas on module.End #

This file contains some obvious lemmas on module.End.

theorem LinearMap.comp_one {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [AddCommMonoid E] [AddCommMonoid F] [Module R F] [Module R E] (f : E →ₗ[R] F) :
f ∘ₗ 1 = f
theorem LinearMap.one_comp {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [AddCommMonoid E] [AddCommMonoid F] [Module R F] [Module R E] (f : E →ₗ[R] F) :
1 ∘ₗ f = f
theorem LinearMap.comp_sum {R : Type u_1} {M : Type u_2} {M₂ : Type u_3} {M₃ : Type u_4} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [AddCommMonoid M₃] [Module R M] [Module R M₂] [Module R M₃] (g : M₃ →ₗ[R] M₂) {α : Type u_5} (s : Finset α) (f : αM →ₗ[R] M₃) :
g ∘ₗ as, f a = as, g ∘ₗ f a
theorem LinearMap.sum_comp {R : Type u_1} {M : Type u_2} {M₂ : Type u_3} {M₃ : Type u_4} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [AddCommMonoid M₃] [Module R M] [Module R M₂] [Module R M₃] (f : M →ₗ[R] M₃) {α : Type u_5} (s : Finset α) (g : αM₃ →ₗ[R] M₂) :
(∑ as, g a) ∘ₗ f = as, g a ∘ₗ f
theorem Module.End.has_eigenvector_iff_hasEigenvalue {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {T : Module.End R M} {α : R} :
(∃ (v : M), T v = α v v 0) T.HasEigenvalue α