Invariant submodules #
In this file, we define and prove some basic results on invariant submodules.
def
Submodule.InvariantUnder
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(T : E →ₗ[R] E)
:
U
is T
invariant (ver 1): U ≤ U.comap
Equations
- U.InvariantUnder T = (U ≤ Submodule.comap T U)
Instances For
@[simp]
theorem
Submodule.invariantUnder_iff_map
{E : Type u_2}
{R : Type u_1}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(T : E →ₗ[R] E)
:
U.InvariantUnder T ↔ Submodule.map T U ≤ U
U
is T
invariant if and only if U.map T ≤ U
theorem
Submodule.invariantUnder_iff_mapsTo
{E : Type u_2}
{R : Type u_1}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(T : E →ₗ[R] E)
:
Set.MapsTo ⇑T ↑U ↑U ↔ U.InvariantUnder T
U
is T
invariant if and only if set.maps_to T U U
theorem
Submodule.invariantUnder_iff_linear_proj_comp_self_eq
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
:
U
is invariant under T
if and only if pᵤ ∘ₗ T = T
,
where pᵤ
denotes the linear projection to U
along V
theorem
Submodule.invariant_under'_iff_linear_proj_comp_self_comp_linear_proj_eq
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
:
V
is invariant under T
if and only if pᵤ ∘ₗ (T ∘ₗ pᵤ) = pᵤ ∘ₗ T
,
where pᵤ
denotes the linear projection to U
along V
theorem
Submodule.isCompl_invariantUnder_iff_linear_proj_and_self_commute
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
:
both U
and V
are invariant under T
if and only if T
commutes with pᵤ
,
where pᵤ
denotes the linear projection to U
along V
theorem
Submodule.invariantUnder_symm_iff_le_map
{E : Type u_2}
{R : Type u_1}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(T : E ≃ₗ[R] E)
:
U.InvariantUnder ↑T.symm ↔ U ≤ Submodule.map T U
U
is invariant under T.symm
if and only if U ⊆ T(U)
theorem
Submodule.commutes_with_linear_proj_iff_linear_proj_eq
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
[Invertible T]
:
theorem
Submodule.invariantUnder_inv_iff_U_subset_image
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(T : E →ₗ[R] E)
[Invertible T]
:
theorem
Submodule.inv_linear_proj_comp_map_eq_linear_proj_iff_images_eq
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
[Invertible T]
: