Invariant submodules #
In this file, we define and prove some basic results on invariant submodules.
def
Submodule.InvariantUnder
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(T : E →ₗ[R] E)
:
U
is T
invariant (ver 1): U ≤ U.comap
Equations
- U.InvariantUnder T = (U ≤ Submodule.comap T U)
Instances For
@[simp]
theorem
Submodule.invariantUnder_iff_map
{E : Type u_2}
{R : Type u_1}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(T : E →ₗ[R] E)
:
U
is T
invariant if and only if U.map T ≤ U
theorem
Submodule.invariantUnder_iff_mapsTo
{E : Type u_2}
{R : Type u_1}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(T : E →ₗ[R] E)
:
U
is T
invariant if and only if set.maps_to T U U
theorem
Submodule.invariantUnder_iff
{E : Type u_2}
{R : Type u_1}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(T : E →ₗ[R] E)
:
U
is T
invariant is equivalent to saying T(U) ⊆ U
theorem
Submodule.linearProjOfIsCompl_eq_self_iff
{E : Type u_2}
{R : Type u_1}
[Ring R]
[AddCommGroup E]
[Module R E]
{p q : Submodule R E}
(hpq : IsCompl p q)
(x : E)
:
projection to p
along q
of x
equals x
if and only if x ∈ p
theorem
Submodule.InvariantUnder.linear_proj_comp_self_eq
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
(h : U.InvariantUnder T)
(x : ↥U)
:
theorem
Submodule.invariantUnderOfLinearProjCompSelfEq
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
(h : ∀ (x : ↥U), ↑((U.linearProjOfIsCompl V hUV) (T ↑x)) = T ↑x)
:
U.InvariantUnder T
theorem
Submodule.invariantUnder_iff_linear_proj_comp_self_eq
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
:
U
is invariant under T
if and only if pᵤ ∘ₗ T = T
,
where pᵤ
denotes the linear projection to U
along V
theorem
Submodule.linearProjOfIsCompl_eq_self_sub_linear_proj
{E : Type u_2}
{R : Type u_1}
[Ring R]
[AddCommGroup E]
[Module R E]
{p q : Submodule R E}
(hpq : IsCompl p q)
(x : E)
:
theorem
Submodule.invariant_under'_iff_linear_proj_comp_self_comp_linear_proj_eq
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
:
V.InvariantUnder T ↔ ∀ (x : E),
↑((U.linearProjOfIsCompl V hUV) (T ↑((U.linearProjOfIsCompl V hUV) x))) = ↑((U.linearProjOfIsCompl V hUV) (T x))
V
is invariant under T
if and only if pᵤ ∘ₗ (T ∘ₗ pᵤ) = pᵤ ∘ₗ T
,
where pᵤ
denotes the linear projection to U
along V
theorem
Submodule.isCompl_invariantUnder_iff_linear_proj_and_self_commute
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
:
both U
and V
are invariant under T
if and only if T
commutes with pᵤ
,
where pᵤ
denotes the linear projection to U
along V
theorem
Submodule.commutes_with_linear_proj_iff_linear_proj_eq
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
[Invertible T]
:
Commute (U.subtype ∘ₗ U.linearProjOfIsCompl V hUV) T ↔ ⅟T ∘ₗ (U.subtype ∘ₗ U.linearProjOfIsCompl V hUV) ∘ₗ T = U.subtype ∘ₗ U.linearProjOfIsCompl V hUV
theorem
Submodule.invariantUnder_inv_iff_U_subset_image
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U : Submodule R E)
(T : E →ₗ[R] E)
[Invertible T]
:
theorem
Submodule.inv_linear_proj_comp_map_eq_linear_proj_iff_images_eq
{E : Type u_1}
{R : Type u_2}
[Ring R]
[AddCommGroup E]
[Module R E]
(U V : Submodule R E)
(hUV : IsCompl U V)
(T : E →ₗ[R] E)
[Invertible T]
:
theorem
StarAlgebra.centralizer_prod
{M : Type u_1}
[AddCommGroup M]
[Module ℂ M]
[StarRing (M →ₗ[ℂ] M)]
[StarModule ℂ (M →ₗ[ℂ] M)]
(A B : StarSubalgebra ℂ (M →ₗ[ℂ] M))
: