some obvious lemmas on self-adjoint operators #
This file provides the polarization identity for self adjoint continuous linear maps
over is_R_or_C
.
theorem
ContinuousLinearMap.IsSelfAdjoint.inner_map_self_eq_zero
{𝕜 : Type u_2}
{E : Type u_1}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[CompleteSpace E]
{T : E →L[𝕜] E}
(hT : IsSelfAdjoint T)
:
Given a self-adjoint continuous linear operator $T$ on $E$, we get $\langle T x, x \rangle = 0$ for any $x\in E$ if and only if $T=0$.
theorem
ContinuousLinearMap.IsSelfAdjoint.inner_map_polarization
{𝕜 : Type u_2}
{E : Type u_1}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[CompleteSpace E]
{T : E →L[𝕜] E}
(hT : IsSelfAdjoint T)
(x : E)
(y : E)
:
The polarization identity for self-adjoint operators.