Documentation

Monlib.LinearAlgebra.LinearMapOp

def LinearMap.op {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] {σ : R →+* S} {M : Type u_3} {M₂ : Type u_4} [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module S M₂] (f : M →ₛₗ[σ] M₂) :
Equations
Instances For
    @[simp]
    theorem LinearMap.op_apply {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] {σ : R →+* S} {M : Type u_3} {M₂ : Type u_4} [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module S M₂] (f : M →ₛₗ[σ] M₂) (x : Mᵐᵒᵖ) :
    def LinearMap.unop {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] {σ : R →+* S} {M : Type u_3} {M₂ : Type u_4} [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module S M₂] (f : Mᵐᵒᵖ →ₛₗ[σ] M₂ᵐᵒᵖ) :
    M →ₛₗ[σ] M₂
    Equations
    Instances For
      @[simp]
      theorem LinearMap.unop_apply {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] {σ : R →+* S} {M : Type u_3} {M₂ : Type u_4} [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module S M₂] (f : Mᵐᵒᵖ →ₛₗ[σ] M₂ᵐᵒᵖ) (x : M) :
      @[simp]
      theorem LinearMap.unop_op {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] {σ : R →+* S} {M : Type u_3} {M₂ : Type u_4} [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module S M₂] (f : Mᵐᵒᵖ →ₛₗ[σ] M₂ᵐᵒᵖ) :
      f.unop.op = f
      @[simp]
      theorem LinearMap.op_unop {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] {σ : R →+* S} {M : Type u_3} {M₂ : Type u_4} [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module S M₂] (f : M →ₛₗ[σ] M₂) :
      f.op.unop = f
      @[simp]
      theorem AlgEquiv.op_toLinearMap {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A ≃ₐ[R] B) :
      (AlgEquiv.op f).toLinearMap = f.toLinearMap.op