def
LinearMap.op
{R : Type u_1}
{S : Type u_2}
[Semiring R]
[Semiring S]
{σ : R →+* S}
{M : Type u_3}
{M₂ : Type u_4}
[AddCommMonoid M]
[AddCommMonoid M₂]
[Module R M]
[Module S M₂]
(f : M →ₛₗ[σ] M₂)
:
Equations
- f.op = { toFun := fun (x : Mᵐᵒᵖ) => MulOpposite.op (f (MulOpposite.unop x)), map_add' := ⋯, map_smul' := ⋯ }
Instances For
@[simp]
theorem
LinearMap.op_apply
{R : Type u_1}
{S : Type u_2}
[Semiring R]
[Semiring S]
{σ : R →+* S}
{M : Type u_3}
{M₂ : Type u_4}
[AddCommMonoid M]
[AddCommMonoid M₂]
[Module R M]
[Module S M₂]
(f : M →ₛₗ[σ] M₂)
(x : Mᵐᵒᵖ)
:
f.op x = MulOpposite.op (f (MulOpposite.unop x))
def
LinearMap.unop
{R : Type u_1}
{S : Type u_2}
[Semiring R]
[Semiring S]
{σ : R →+* S}
{M : Type u_3}
{M₂ : Type u_4}
[AddCommMonoid M]
[AddCommMonoid M₂]
[Module R M]
[Module S M₂]
(f : Mᵐᵒᵖ →ₛₗ[σ] M₂ᵐᵒᵖ)
:
Equations
- f.unop = { toFun := fun (x : M) => MulOpposite.unop (f (MulOpposite.op x)), map_add' := ⋯, map_smul' := ⋯ }
Instances For
@[simp]
theorem
LinearMap.unop_apply
{R : Type u_1}
{S : Type u_2}
[Semiring R]
[Semiring S]
{σ : R →+* S}
{M : Type u_3}
{M₂ : Type u_4}
[AddCommMonoid M]
[AddCommMonoid M₂]
[Module R M]
[Module S M₂]
(f : Mᵐᵒᵖ →ₛₗ[σ] M₂ᵐᵒᵖ)
(x : M)
:
f.unop x = MulOpposite.unop (f (MulOpposite.op x))