Conjugate of a matrix #
This file defines the conjugate of a matrix, matrix.conj
with the notation of this being ᴴᵀ
(i.e., xᴴᵀ i j = star (x i j)
), and shows basic properties about it.
Equations
- Matrix.«term_ᴴᵀ» = Lean.ParserDescr.trailingNode `Matrix.«term_ᴴᵀ» 1024 1024 (Lean.ParserDescr.symbol "ᴴᵀ")
Instances For
theorem
Matrix.conj_conj
{α : Type u_1}
{n₁ : Type u_2}
{n₂ : Type u_3}
[InvolutiveStar α]
(x : Matrix n₁ n₂ α)
:
x.conj.conj = x
theorem
Matrix.conj_conjTranspose
{α : Type u_1}
{n₁ : Type u_2}
{n₂ : Type u_3}
[InvolutiveStar α]
(x : Matrix n₁ n₂ α)
:
x.conj.conjTranspose = x.transpose
theorem
Matrix.conjTranspose_conj
{α : Type u_1}
{n₁ : Type u_2}
{n₂ : Type u_3}
[InvolutiveStar α]
(x : Matrix n₁ n₂ α)
:
x.conjTranspose.conj = x.transpose
theorem
Matrix.conj_one
{α : Type u_1}
{n : Type u_2}
[DecidableEq n]
[Semiring α]
[StarRing α]
:
Matrix.conj 1 = 1
theorem
Matrix.conj_zero
{α : Type u_1}
{n₁ : Type u_2}
{n₂ : Type u_3}
[DecidableEq n₁]
[DecidableEq n₂]
[AddMonoid α]
[StarAddMonoid α]
:
Matrix.conj 0 = 0