Normed additive commutative groups of rings #
This file contains the definition of normed_add_comm_group_of_ring
which is a structure
combining the ring structure, the norm, and the metric space structure.
@[reducible]
def
Algebra.ofIsScalarTowerSmulCommClass
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Module R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
:
Algebra R A
Equations
Instances For
noncomputable instance
PiNormedAddCommGroupOfRing
{ι : Type u_1}
[Fintype ι]
{B : ι → Type u_2}
[(i : ι) → NormedAddCommGroupOfRing (B i)]
:
NormedAddCommGroupOfRing ((i : ι) → B i)