Normed additive commutative groups of rings #
This file contains the definition of normed_add_comm_group_of_ring
which is a structure
combining the ring structure, the norm, and the metric space structure.
@[reducible]
class
NormedAddCommGroupOfRing
(B : Type u_1)
extends
Ring
,
NormedAddCommGroup
,
Semiring
,
Norm
,
AddCommGroup
,
AddGroupWithOne
,
NonUnitalSemiring
,
NonAssocSemiring
,
MonoidWithZero
,
NonUnitalNonAssocSemiring
,
Monoid
,
MulZeroOneClass
,
SemigroupWithZero
,
AddCommMonoidWithOne
,
MulOneClass
,
IntCast
,
AddMonoidWithOne
,
MetricSpace
,
AddGroup
,
AddCommMonoid
,
Distrib
,
Semigroup
,
MulZeroClass
,
NatCast
,
SubNegMonoid
,
AddMonoid
,
One
,
Neg
,
Sub
,
AddCommSemigroup
,
AddSemigroup
,
AddZeroClass
,
Mul
,
Zero
,
AddCommMagma
,
Add
,
PseudoMetricSpace
,
Dist
:
Type u_1
normed_add_comm_group
structure extended by ring
Instances
@[reducible]
def
Algebra.ofIsScalarTowerSmulCommClass
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Module R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
:
Algebra R A
Equations
- Algebra.ofIsScalarTowerSmulCommClass = Algebra.ofModule ⋯ ⋯
Instances For
noncomputable instance
PiNormedAddCommGroupOfRing
{ι : Type u_1}
[Fintype ι]
{B : ι → Type u_2}
[(i : ι) → NormedAddCommGroupOfRing (B i)]
:
NormedAddCommGroupOfRing ((i : ι) → B i)
Equations
- PiNormedAddCommGroupOfRing = NormedAddCommGroupOfRing.mk ⋯