Documentation

Monlib.LinearAlgebra.Nacgor

Normed additive commutative groups of rings #

This file contains the definition of normed_add_comm_group_of_ring which is a structure combining the ring structure, the norm, and the metric space structure.

@[reducible]
class NormedAddCommGroupOfRing (B : Type u_1) extends Ring B, NormedAddCommGroup B :
Type u_1

normed_add_comm_group structure extended by ring

Instances
    @[reducible]
    Equations
    Instances For
      noncomputable instance PiNormedAddCommGroupOfRing {ι : Type u_1} [Fintype ι] {B : ιType u_2} [(i : ι) → NormedAddCommGroupOfRing (B i)] :
      NormedAddCommGroupOfRing ((i : ι) → B i)
      Equations
      theorem Pi.normedAddCommGroupOfRing.norm_eq_sum {ι : Type u_1} [Fintype ι] {B : ιType u_2} [(i : ι) → NormedAddCommGroupOfRing (B i)] (x : (i : ι) → B i) :
      x = (∑ i : ι, x i ^ 2)