Documentation

Monlib.LinearAlgebra.PiStarOrderedRing

pi.star_ordered_ring #

This file contains the definition of pi.star_ordered_ring.

theorem AddSubmonoid.mem_pi {ι : Type u_1} {B : ιType u_2} [(i : ι) → AddZeroClass (B i)] (x : (i : ι) → AddSubmonoid (B i)) (y : (i : ι) → B i) :
y AddSubmonoid.pi Set.univ x ∀ (i : ι), y i x i
@[reducible]
def Set.ofPi {ι : Type u_1} {B : ιType u_2} [DecidableEq ι] [(i : ι) → Zero (B i)] (s : Set ((i : ι) → B i)) (i : ι) :
Set (B i)
Equations
Instances For
    theorem Set.pi_ofPi {ι : Type u_1} {B : ιType u_2} [DecidableEq ι] [(i : ι) → AddZeroClass (B i)] {s : (i : ι) → Set (B i)} (h : ∀ (i : ι), s i 0) :
    (Set.univ.pi s).ofPi = s
    def AddSubmonoid.ofPi {ι : Type u_1} {B : ιType u_2} [DecidableEq ι] [(i : ι) → AddZeroClass (B i)] :
    AddSubmonoid ((i : ι) → B i)(i : ι) → AddSubmonoid (B i)
    Equations
    • h.ofPi i = { carrier := fun (x : B i) => x h.carrier.ofPi i, add_mem' := , zero_mem' := }
    Instances For
      theorem AddSubmonoid.pi_ofPi {ι : Type u_1} {B : ιType u_2} [DecidableEq ι] [(i : ι) → AddZeroClass (B i)] (h : (i : ι) → AddSubmonoid (B i)) :
      (AddSubmonoid.pi Set.univ h).ofPi = h
      theorem Set.ofPi_mem' {ι : Type u_1} {B : ιType u_2} [DecidableEq ι] [(i : ι) → AddZeroClass (B i)] {s : (i : ι) → Set (B i)} {S : Set ((i : ι) → B i)} (hs : Set.univ.pi s S) (h : ∀ (i : ι), s i 0) (i : ι) :
      s i S.ofPi i
      theorem AddSubmonoid.closure_pi {ι : Type u_1} {B : ιType u_2} [DecidableEq ι] [(i : ι) → AddZeroClass (B i)] {s : (i : ι) → Set (B i)} {x : (i : ι) → B i} :
      x AddSubmonoid.closure (Set.univ.pi fun (i : ι) => s i)∀ (i : ι), x i AddSubmonoid.closure (s i)
      theorem Pi.StarOrderedRing.nonneg_def {ι : Type u_1} {α : ιType u_2} [(i : ι) → NonUnitalSemiring (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → StarRing (α i)] [∀ (i : ι), StarOrderedRing (α i)] (h : ∀ (i : ι) (x : α i), 0 x ∃ (y : α i), star y * y = x) (x : (i : ι) → α i) :
      0 x ∃ (y : (i : ι) → α i), star y * y = x
      instance instCovariantClassForallSwapHAddLeOfStarOrderedRing_monlib {ι : Type u_1} {α : ιType u_2} [(i : ι) → Ring (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → StarRing (α i)] [∀ (i : ι), StarOrderedRing (α i)] :
      CovariantClass ((i : ι) → α i) ((i : ι) → α i) (Function.swap fun (x x_1 : (i : ι) → α i) => x + x_1) fun (x x_1 : (i : ι) → α i) => x x_1
      Equations
      • =
      theorem Pi.StarOrderedRing.le_def {ι : Type u_1} {α : ιType u_2} [(i : ι) → Ring (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → StarRing (α i)] [∀ (i : ι), StarOrderedRing (α i)] (h : ∀ (i : ι) (x : α i), 0 x ∃ (y : α i), star y * y = x) (x : (i : ι) → α i) (y : (i : ι) → α i) :
      x y ∃ (z : (i : ι) → α i), star z * z = y - x
      def Pi.starOrderedRing {ι : Type u_1} {B : ιType u_2} [(i : ι) → Ring (B i)] [(i : ι) → PartialOrder (B i)] [(i : ι) → StarRing (B i)] [∀ (i : ι), StarOrderedRing (B i)] (h : ∀ (i : ι) (x : B i), 0 x ∃ (y : B i), star y * y = x) :
      StarOrderedRing ((i : ι) → B i)
      Equations
      • =
      Instances For