pi.star_ordered_ring #
This file contains the definition of pi.star_ordered_ring
.
theorem
AddSubmonoid.mem_pi
{ι : Type u_1}
{B : ι → Type u_2}
[(i : ι) → AddZeroClass (B i)]
(x : (i : ι) → AddSubmonoid (B i))
(y : (i : ι) → B i)
:
y ∈ AddSubmonoid.pi Set.univ x ↔ ∀ (i : ι), y i ∈ x i
theorem
Set.pi_ofPi
{ι : Type u_1}
{B : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → AddZeroClass (B i)]
{s : (i : ι) → Set (B i)}
(h : ∀ (i : ι), s i 0)
:
(Set.univ.pi s).ofPi = s
def
AddSubmonoid.ofPi
{ι : Type u_1}
{B : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → AddZeroClass (B i)]
:
AddSubmonoid ((i : ι) → B i) → (i : ι) → AddSubmonoid (B i)
Equations
Instances For
theorem
AddSubmonoid.pi_ofPi
{ι : Type u_1}
{B : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → AddZeroClass (B i)]
(h : (i : ι) → AddSubmonoid (B i))
:
(AddSubmonoid.pi Set.univ h).ofPi = h
theorem
Set.ofPi_mem'
{ι : Type u_1}
{B : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → AddZeroClass (B i)]
{s : (i : ι) → Set (B i)}
{S : Set ((i : ι) → B i)}
(hs : Set.univ.pi s ⊆ S)
(h : ∀ (i : ι), s i 0)
(i : ι)
:
s i ⊆ S.ofPi i
theorem
AddSubmonoid.closure_pi
{ι : Type u_1}
{B : ι → Type u_2}
[DecidableEq ι]
[(i : ι) → AddZeroClass (B i)]
{s : (i : ι) → Set (B i)}
{x : (i : ι) → B i}
:
x ∈ AddSubmonoid.closure (Set.univ.pi fun (i : ι) => s i) → ∀ (i : ι), x i ∈ AddSubmonoid.closure (s i)
theorem
Pi.StarOrderedRing.nonneg_def
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → NonUnitalSemiring (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → StarRing (α i)]
[∀ (i : ι), StarOrderedRing (α i)]
(h : ∀ (i : ι) (x : α i), 0 ≤ x ↔ ∃ (y : α i), star y * y = x)
(x : (i : ι) → α i)
:
instance
instCovariantClassForallSwapHAddLeOfStarOrderedRing_monlib
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Ring (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → StarRing (α i)]
[∀ (i : ι), StarOrderedRing (α i)]
:
CovariantClass ((i : ι) → α i) ((i : ι) → α i) (Function.swap fun (x x_1 : (i : ι) → α i) => x + x_1)
fun (x x_1 : (i : ι) → α i) => x ≤ x_1
Equations
- ⋯ = ⋯
theorem
Pi.StarOrderedRing.le_def
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Ring (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → StarRing (α i)]
[∀ (i : ι), StarOrderedRing (α i)]
(h : ∀ (i : ι) (x : α i), 0 ≤ x ↔ ∃ (y : α i), star y * y = x)
(x : (i : ι) → α i)
(y : (i : ι) → α i)
:
def
Pi.starOrderedRing
{ι : Type u_1}
{B : ι → Type u_2}
[(i : ι) → Ring (B i)]
[(i : ι) → PartialOrder (B i)]
[(i : ι) → StarRing (B i)]
[∀ (i : ι), StarOrderedRing (B i)]
(h : ∀ (i : ι) (x : B i), 0 ≤ x ↔ ∃ (y : B i), star y * y = x)
:
StarOrderedRing ((i : ι) → B i)
Equations
- ⋯ = ⋯