Documentation

Monlib.LinearAlgebra.QuantumSet.PhiMap

@[reducible, inline]
noncomputable abbrev PhiMap {A : Type u_1} {B : Type u_2} [starAlgebra B] [starAlgebra A] [QuantumSet A] [QuantumSet B] :
Equations
  • PhiMap = Upsilon.trans TensorProduct.toIsBimoduleMap
Instances For
    theorem PhiMap_apply {A : Type u_1} {B : Type u_2} [starAlgebra B] [starAlgebra A] [QuantumSet A] [QuantumSet B] (f : A →ₗ[] B) :
    PhiMap f = TensorProduct.toIsBimoduleMap (Upsilon f)
    theorem oneInner_map_one_eq_oneInner_Psi_map {A : Type u_1} {B : Type u_2} [starAlgebra B] [starAlgebra A] [hA : QuantumSet A] [hB : QuantumSet B] (f : A →ₗ[] B) (r : ) (t : ) :
    inner 1 (f 1) = inner 1 ((QuantumSet.Psi r t) f)
    theorem oneInner_map_one_eq_oneInner_PhiMap_map_one {A : Type u_1} {B : Type u_2} [starAlgebra B] [starAlgebra A] [hA : QuantumSet A] [hB : QuantumSet B] (f : A →ₗ[] B) :
    inner 1 (f 1) = inner 1 ((PhiMap f) 1)