noncomputable def
Submodule.tensorProduct
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[CommSemiring R]
[AddCommMonoid E]
[AddCommMonoid F]
[Module R E]
[Module R F]
(V : Submodule R E)
(W : Submodule R F)
:
Submodule R (TensorProduct R E F)
Equations
- V.tensorProduct W = LinearMap.range (TensorProduct.mapIncl V W)
Instances For
theorem
Submodule.tensorProduct_mem
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[CommSemiring R]
[AddCommMonoid E]
[AddCommMonoid F]
[Module R E]
[Module R F]
{V : Submodule R E}
{W : Submodule R F}
(x : TensorProduct R ↥V ↥W)
:
(TensorProduct.mapIncl V W) x ∈ V.tensorProduct W
noncomputable def
Submodule.mem_tensorProduct
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[CommSemiring R]
[AddCommMonoid E]
[AddCommMonoid F]
[Module R E]
[Module R F]
{V : Submodule R E}
{W : Submodule R F}
(vw : ↥(V.tensorProduct W))
:
TensorProduct R ↥V ↥W
Equations
Instances For
theorem
Submodule.mem_tensorProduct_eq
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[CommSemiring R]
[AddCommMonoid E]
[AddCommMonoid F]
[Module R E]
[Module R F]
{V : Submodule R E}
{W : Submodule R F}
(vw : ↥(V.tensorProduct W))
:
(TensorProduct.mapIncl V W) (Submodule.mem_tensorProduct vw) = ↑vw
theorem
TensorProduct.mapIncl_isInjective
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike R]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace R E]
[InnerProductSpace R F]
[FiniteDimensional R E]
[FiniteDimensional R F]
{V : Submodule R E}
{W : Submodule R F}
:
theorem
Submodule.mapIncl_mem_tensorProduct
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike R]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace R E]
[InnerProductSpace R F]
[FiniteDimensional R E]
[FiniteDimensional R F]
{V : Submodule R E}
{W : Submodule R F}
(v : TensorProduct R ↥V ↥W)
:
Submodule.mem_tensorProduct ⟨(TensorProduct.mapIncl V W) v, ⋯⟩ = v
theorem
norm_tmul
{𝕜 : Type u_4}
{B : Type u_5}
{C : Type u_6}
[RCLike 𝕜]
[NormedAddCommGroup B]
[NormedAddCommGroup C]
[InnerProductSpace 𝕜 B]
[InnerProductSpace 𝕜 C]
[FiniteDimensional 𝕜 B]
[FiniteDimensional 𝕜 C]
(x : B)
(y : C)
:
theorem
TensorProduct.mapIncl_norm_map
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(V : Submodule 𝕜 E)
(W : Submodule 𝕜 F)
(x : TensorProduct 𝕜 ↥V ↥W)
:
noncomputable def
Submodule.tensorProduct_linearIsometryEquiv
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(V : Submodule 𝕜 E)
(W : Submodule 𝕜 F)
:
TensorProduct 𝕜 ↥V ↥W ≃ₗᵢ[𝕜] ↥(V.tensorProduct W)
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
Submodule.tensorProduct_orthonormalBasis
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
{V : Submodule 𝕜 E}
{W : Submodule 𝕜 F}
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[Fintype ι₁]
[Fintype ι₂]
[DecidableEq ι₁]
[DecidableEq ι₂]
(v : OrthonormalBasis ι₁ 𝕜 ↥V)
(w : OrthonormalBasis ι₂ 𝕜 ↥W)
:
OrthonormalBasis (ι₁ × ι₂) 𝕜 ↥(V.tensorProduct W)
Equations
- Submodule.tensorProduct_orthonormalBasis v w = (v.tensorProduct w).map (V.tensorProduct_linearIsometryEquiv W)
Instances For
theorem
Submodule.tensorProduct_orthonormalBasis_apply
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
{V : Submodule 𝕜 E}
{W : Submodule 𝕜 F}
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[Fintype ι₁]
[Fintype ι₂]
[DecidableEq ι₁]
[DecidableEq ι₂]
(v : OrthonormalBasis ι₁ 𝕜 ↥V)
(w : OrthonormalBasis ι₂ 𝕜 ↥W)
(i : ι₁ × ι₂)
:
↑((Submodule.tensorProduct_orthonormalBasis v w) i) = ↑(v i.1) ⊗ₜ[𝕜] ↑(w i.2)
theorem
Submodule.tensorProduct_finrank
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
{V : Submodule 𝕜 E}
{W : Submodule 𝕜 F}
:
Module.finrank 𝕜 ↥(V.tensorProduct W) = Module.finrank 𝕜 ↥V * Module.finrank 𝕜 ↥W
theorem
orthogonalProjection_map_orthogonalProjection
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(V : Submodule 𝕜 E)
(W : Submodule 𝕜 F)
:
TensorProduct.map ↑(orthogonalProjection' V) ↑(orthogonalProjection' W) = ↑(orthogonalProjection' (V.tensorProduct W))
theorem
TensorProduct.submodule_exists_le_tensorProduct
{R : Type u_4}
{M : Type u_5}
{N : Type u_6}
[Field R]
[AddCommGroup M]
[AddCommGroup N]
[Module R M]
[Module R N]
(U : Submodule R (TensorProduct R M N))
(hU : Module.Finite R ↥U)
:
∃ (M' : Submodule R M) (N' : Submodule R N) (_ : Module.Finite R ↥M') (_ : Module.Finite R ↥N'), U ≤ M'.tensorProduct N'
theorem
orthogonalProjection'_ortho_eq
{𝕜 : Type u_4}
{E : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
(K : Submodule 𝕜 E)
[HasOrthogonalProjection K]
:
theorem
TensorProduct.submodule_exists_le_tensorProduct_ofFiniteDimensional
{R : Type u_4}
{M : Type u_5}
{N : Type u_6}
[Field R]
[AddCommGroup M]
[AddCommGroup N]
[Module R M]
[Module R N]
[Module.Finite R M]
[Module.Finite R N]
(U : Submodule R (TensorProduct R M N))
:
theorem
orthogonalProjection_of_tensorProduct
{E : Type u_4}
{F : Type u_5}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℂ E]
[InnerProductSpace ℂ F]
[FiniteDimensional ℂ E]
[FiniteDimensional ℂ F]
{A : TensorProduct ℂ E F →ₗ[ℂ] TensorProduct ℂ E F}
(hA : ∃ (U : Submodule ℂ E) (V : Submodule ℂ F), ↑(orthogonalProjection' (U.tensorProduct V)) = A)
:
∃ (U : Submodule ℂ (TensorProduct ℂ E F)), ↑(orthogonalProjection' U) = A
theorem
col_hMul_col_conjTranspose_is_kronecker_of_vectors
{R : Type u_4}
{m : Type u_5}
{n : Type u_6}
[Semiring R]
(x : m → R)
(y : n → R)
:
Matrix.vecMulVec x y = Matrix.reshape.symm
(Matrix.ofCol
(matrixProdUnitRight (Matrix.kroneckerMap (fun (x1 x2 : R) => x1 * x2) (Matrix.col Unit x) (Matrix.col Unit y))))
vec_mulVec x y
written as a kronecker product
noncomputable def
PiLp_tensorEquiv
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[DecidableEq ι₁]
[DecidableEq ι₂]
[Fintype ι₁]
[Fintype ι₂]
{M₁ : ι₁ → Type u_6}
{M₂ : ι₂ → Type u_7}
[(i₁ : ι₁) → NormedAddCommGroup (M₁ i₁)]
[(i₂ : ι₂) → NormedAddCommGroup (M₂ i₂)]
[(i₁ : ι₁) → InnerProductSpace 𝕜 (M₁ i₁)]
[(i₂ : ι₂) → InnerProductSpace 𝕜 (M₂ i₂)]
:
TensorProduct 𝕜 (PiLp 2 M₁) (PiLp 2 M₂) ≃ₗ[𝕜] PiLp 2 fun (i : ι₁ × ι₂) => TensorProduct 𝕜 (M₁ i.1) (M₂ i.2)
Equations
- PiLp_tensorEquiv = directSumTensor
Instances For
@[simp]
theorem
PiLp_tensorEquiv_symm_apply
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[DecidableEq ι₁]
[DecidableEq ι₂]
[Fintype ι₁]
[Fintype ι₂]
{M₁ : ι₁ → Type u_6}
{M₂ : ι₂ → Type u_7}
[(i₁ : ι₁) → NormedAddCommGroup (M₁ i₁)]
[(i₂ : ι₂) → NormedAddCommGroup (M₂ i₂)]
[(i₁ : ι₁) → InnerProductSpace 𝕜 (M₁ i₁)]
[(i₂ : ι₂) → InnerProductSpace 𝕜 (M₂ i₂)]
(a : (i : ι₁ × ι₂) → TensorProduct 𝕜 (M₁ i.1) (M₂ i.2))
:
PiLp_tensorEquiv.symm a = directSumTensorInvFun a
@[simp]
theorem
PiLp_tensorEquiv_apply
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[DecidableEq ι₁]
[DecidableEq ι₂]
[Fintype ι₁]
[Fintype ι₂]
{M₁ : ι₁ → Type u_6}
{M₂ : ι₂ → Type u_7}
[(i₁ : ι₁) → NormedAddCommGroup (M₁ i₁)]
[(i₂ : ι₂) → NormedAddCommGroup (M₂ i₂)]
[(i₁ : ι₁) → InnerProductSpace 𝕜 (M₁ i₁)]
[(i₂ : ι₂) → InnerProductSpace 𝕜 (M₂ i₂)]
(a : TensorProduct 𝕜 ((i : ι₁) → M₁ i) ((i : ι₂) → M₂ i))
(i : ι₁ × ι₂)
:
PiLp_tensorEquiv a i = directSumTensorToFun a i
theorem
PiLp_tensorEquiv_tmul
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[DecidableEq ι₁]
[DecidableEq ι₂]
[Fintype ι₁]
[Fintype ι₂]
{M₁ : ι₁ → Type u_6}
{M₂ : ι₂ → Type u_7}
[(i₁ : ι₁) → NormedAddCommGroup (M₁ i₁)]
[(i₂ : ι₂) → NormedAddCommGroup (M₂ i₂)]
[(i₁ : ι₁) → InnerProductSpace 𝕜 (M₁ i₁)]
[(i₂ : ι₂) → InnerProductSpace 𝕜 (M₂ i₂)]
(x : PiLp 2 M₁)
(y : PiLp 2 M₂)
(i : ι₁ × ι₂)
:
@[simp]
theorem
PiLp_tensorEquiv_norm_map
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[DecidableEq ι₁]
[DecidableEq ι₂]
[Fintype ι₁]
[Fintype ι₂]
{M₁ : ι₁ → Type u_6}
{M₂ : ι₂ → Type u_7}
[(i₁ : ι₁) → NormedAddCommGroup (M₁ i₁)]
[(i₂ : ι₂) → NormedAddCommGroup (M₂ i₂)]
[(i₁ : ι₁) → InnerProductSpace 𝕜 (M₁ i₁)]
[(i₂ : ι₂) → InnerProductSpace 𝕜 (M₂ i₂)]
[∀ (i : ι₁), FiniteDimensional 𝕜 (M₁ i)]
[∀ (i : ι₂), FiniteDimensional 𝕜 (M₂ i)]
(x : TensorProduct 𝕜 (PiLp 2 M₁) (PiLp 2 M₂))
:
@[reducible, inline]
noncomputable abbrev
PiLp_tensorLinearIsometryEquiv
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[DecidableEq ι₁]
[DecidableEq ι₂]
[Fintype ι₁]
[Fintype ι₂]
{M₁ : ι₁ → Type u_6}
{M₂ : ι₂ → Type u_7}
[(i₁ : ι₁) → NormedAddCommGroup (M₁ i₁)]
[(i₂ : ι₂) → NormedAddCommGroup (M₂ i₂)]
[(i₁ : ι₁) → InnerProductSpace 𝕜 (M₁ i₁)]
[(i₂ : ι₂) → InnerProductSpace 𝕜 (M₂ i₂)]
[∀ (i : ι₁), FiniteDimensional 𝕜 (M₁ i)]
[∀ (i : ι₂), FiniteDimensional 𝕜 (M₂ i)]
:
TensorProduct 𝕜 (PiLp 2 M₁) (PiLp 2 M₂) ≃ₗᵢ[𝕜] PiLp 2 fun (i : ι₁ × ι₂) => TensorProduct 𝕜 (M₁ i.1) (M₂ i.2)
Equations
- PiLp_tensorLinearIsometryEquiv = { toLinearEquiv := PiLp_tensorEquiv, norm_map' := ⋯ }
Instances For
@[simp]
theorem
PiLp_tensorLinearIsometryEquiv_invFun
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[DecidableEq ι₁]
[DecidableEq ι₂]
[Fintype ι₁]
[Fintype ι₂]
{M₁ : ι₁ → Type u_6}
{M₂ : ι₂ → Type u_7}
[(i₁ : ι₁) → NormedAddCommGroup (M₁ i₁)]
[(i₂ : ι₂) → NormedAddCommGroup (M₂ i₂)]
[(i₁ : ι₁) → InnerProductSpace 𝕜 (M₁ i₁)]
[(i₂ : ι₂) → InnerProductSpace 𝕜 (M₂ i₂)]
[∀ (i : ι₁), FiniteDimensional 𝕜 (M₁ i)]
[∀ (i : ι₂), FiniteDimensional 𝕜 (M₂ i)]
(a : (i : ι₁ × ι₂) → TensorProduct 𝕜 (M₁ i.1) (M₂ i.2))
:
PiLp_tensorLinearIsometryEquiv.invFun a = directSumTensorInvFun a
@[simp]
theorem
PiLp_tensorLinearIsometryEquiv_toFun
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[DecidableEq ι₁]
[DecidableEq ι₂]
[Fintype ι₁]
[Fintype ι₂]
{M₁ : ι₁ → Type u_6}
{M₂ : ι₂ → Type u_7}
[(i₁ : ι₁) → NormedAddCommGroup (M₁ i₁)]
[(i₂ : ι₂) → NormedAddCommGroup (M₂ i₂)]
[(i₁ : ι₁) → InnerProductSpace 𝕜 (M₁ i₁)]
[(i₂ : ι₂) → InnerProductSpace 𝕜 (M₂ i₂)]
[∀ (i : ι₁), FiniteDimensional 𝕜 (M₁ i)]
[∀ (i : ι₂), FiniteDimensional 𝕜 (M₂ i)]
(a : TensorProduct 𝕜 ((i : ι₁) → M₁ i) ((i : ι₂) → M₂ i))
(i : ι₁ × ι₂)
:
PiLp_tensorLinearIsometryEquiv a i = directSumTensorToFun a i
@[simp]
theorem
PiLp_tensorLinearIsometryEquiv_symm_apply
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[DecidableEq ι₁]
[DecidableEq ι₂]
[Fintype ι₁]
[Fintype ι₂]
{M₁ : ι₁ → Type u_6}
{M₂ : ι₂ → Type u_7}
[(i₁ : ι₁) → NormedAddCommGroup (M₁ i₁)]
[(i₂ : ι₂) → NormedAddCommGroup (M₂ i₂)]
[(i₁ : ι₁) → InnerProductSpace 𝕜 (M₁ i₁)]
[(i₂ : ι₂) → InnerProductSpace 𝕜 (M₂ i₂)]
[∀ (i : ι₁), FiniteDimensional 𝕜 (M₁ i)]
[∀ (i : ι₂), FiniteDimensional 𝕜 (M₂ i)]
(a : (i : ι₁ × ι₂) → TensorProduct 𝕜 (M₁ i.1) (M₂ i.2))
:
PiLp_tensorLinearIsometryEquiv.symm a = directSumTensorInvFun a
@[simp]
theorem
PiLp_tensorLinearIsometryEquiv_apply
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[DecidableEq ι₁]
[DecidableEq ι₂]
[Fintype ι₁]
[Fintype ι₂]
{M₁ : ι₁ → Type u_6}
{M₂ : ι₂ → Type u_7}
[(i₁ : ι₁) → NormedAddCommGroup (M₁ i₁)]
[(i₂ : ι₂) → NormedAddCommGroup (M₂ i₂)]
[(i₁ : ι₁) → InnerProductSpace 𝕜 (M₁ i₁)]
[(i₂ : ι₂) → InnerProductSpace 𝕜 (M₂ i₂)]
[∀ (i : ι₁), FiniteDimensional 𝕜 (M₁ i)]
[∀ (i : ι₂), FiniteDimensional 𝕜 (M₂ i)]
(a : TensorProduct 𝕜 ((i : ι₁) → M₁ i) ((i : ι₂) → M₂ i))
(i : ι₁ × ι₂)
:
PiLp_tensorLinearIsometryEquiv a i = directSumTensorToFun a i
theorem
PiLp_tensorLinearIsometryEquiv_tmul
{𝕜 : Type u_1}
[RCLike 𝕜]
{ι₁ : Type u_4}
{ι₂ : Type u_5}
[DecidableEq ι₁]
[DecidableEq ι₂]
[Fintype ι₁]
[Fintype ι₂]
{M₁ : ι₁ → Type u_6}
{M₂ : ι₂ → Type u_7}
[(i₁ : ι₁) → NormedAddCommGroup (M₁ i₁)]
[(i₂ : ι₂) → NormedAddCommGroup (M₂ i₂)]
[(i₁ : ι₁) → InnerProductSpace 𝕜 (M₁ i₁)]
[(i₂ : ι₂) → InnerProductSpace 𝕜 (M₂ i₂)]
[∀ (i : ι₁), FiniteDimensional 𝕜 (M₁ i)]
[∀ (i : ι₂), FiniteDimensional 𝕜 (M₂ i)]
(x : PiLp 2 M₁)
(y : PiLp 2 M₂)
(i : ι₁ × ι₂)
:
@[reducible, inline]
noncomputable abbrev
euclideanSpaceTensor
{R : Type u_4}
[RCLike R]
{ι₁ : Type u_5}
{ι₂ : Type u_6}
[Fintype ι₁]
[Fintype ι₂]
[DecidableEq ι₁]
[DecidableEq ι₂]
:
TensorProduct R (EuclideanSpace R ι₁) (EuclideanSpace R ι₂) ≃ₗᵢ[R] EuclideanSpace (TensorProduct R R R) (ι₁ × ι₂)
Equations
- euclideanSpaceTensor = PiLp_tensorLinearIsometryEquiv
Instances For
theorem
euclideanSpaceTensor_apply
{R : Type u_4}
[RCLike R]
{ι₁ : Type u_5}
{ι₂ : Type u_6}
[Fintype ι₁]
[Fintype ι₂]
[DecidableEq ι₁]
[DecidableEq ι₂]
(x : EuclideanSpace R ι₁)
(y : EuclideanSpace R ι₂)
(i : ι₁ × ι₂)
:
noncomputable def
TensorProduct.lid_linearIsometryEquiv
(𝕜 : Type u_4)
(E : Type u_5)
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[FiniteDimensional 𝕜 E]
:
TensorProduct 𝕜 𝕜 E ≃ₗᵢ[𝕜] E
Equations
- TensorProduct.lid_linearIsometryEquiv 𝕜 E = { toLinearEquiv := TensorProduct.lid 𝕜 E, norm_map' := ⋯ }
Instances For
@[simp]
theorem
TensorProduct.lid_linearIsometryEquiv_apply
(𝕜 : Type u_4)
(E : Type u_5)
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[FiniteDimensional 𝕜 E]
:
∀ (a : TensorProduct 𝕜 𝕜 E),
(TensorProduct.lid_linearIsometryEquiv 𝕜 E) a = (TensorProduct.liftAux (LinearMap.lsmul 𝕜 E)) a
@[simp]
theorem
TensorProduct.lid_linearIsometryEquiv_invFun
(𝕜 : Type u_4)
(E : Type u_5)
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[FiniteDimensional 𝕜 E]
(a : E)
:
(TensorProduct.lid_linearIsometryEquiv 𝕜 E).invFun a = 1 ⊗ₜ[𝕜] a
@[simp]
theorem
TensorProduct.lid_linearIsometryEquiv_symm_apply
(𝕜 : Type u_4)
(E : Type u_5)
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[FiniteDimensional 𝕜 E]
(a : E)
:
(TensorProduct.lid_linearIsometryEquiv 𝕜 E).symm a = 1 ⊗ₜ[𝕜] a
@[simp]
theorem
TensorProduct.lid_linearIsometryEquiv_toFun
(𝕜 : Type u_4)
(E : Type u_5)
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[FiniteDimensional 𝕜 E]
:
∀ (a : TensorProduct 𝕜 𝕜 E),
(TensorProduct.lid_linearIsometryEquiv 𝕜 E) a = (TensorProduct.liftAux (LinearMap.lsmul 𝕜 E)) a
@[reducible, inline]
noncomputable abbrev
euclideanSpaceTensor'
{R : Type u_4}
[RCLike R]
{ι₁ : Type u_5}
{ι₂ : Type u_6}
[Fintype ι₁]
[Fintype ι₂]
[DecidableEq ι₁]
[DecidableEq ι₂]
:
TensorProduct R (EuclideanSpace R ι₁) (EuclideanSpace R ι₂) ≃ₗᵢ[R] EuclideanSpace R (ι₁ × ι₂)
Equations
- euclideanSpaceTensor' = euclideanSpaceTensor.trans (LinearIsometryEquiv.piLpCongrRight 2 fun (x : ι₁ × ι₂) => TensorProduct.lid_linearIsometryEquiv R R)
Instances For
theorem
euclideanSpaceTensor'_apply
{R : Type u_4}
[RCLike R]
{ι₁ : Type u_5}
{ι₂ : Type u_6}
[Fintype ι₁]
[Fintype ι₂]
[DecidableEq ι₁]
[DecidableEq ι₂]
(x : EuclideanSpace R ι₁)
(y : EuclideanSpace R ι₂)
(i : ι₁ × ι₂)
:
theorem
LinearIsometryEquiv.linearMap_adjoint
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
{f : E ≃ₗᵢ[𝕜] F}
:
LinearMap.adjoint ↑f.toLinearEquiv = ↑f.symm.toLinearEquiv
theorem
submodule_neq_tensorProduct_of
{R : Type u_4}
[RCLike R]
{E : Type u_5}
{F : Type u_6}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace R E]
[InnerProductSpace R F]
[FiniteDimensional R E]
[FiniteDimensional R F]
(U : Submodule R (TensorProduct R E F))
{p : ℕ}
(hp : Nat.Prime p)
(hU : Module.finrank R ↥U = p)
:
¬∃ (V : Submodule R E) (W : Submodule R F) (_ : 1 < Module.finrank R ↥V) (_ : 1 < Module.finrank R ↥W),
U = V.tensorProduct W