Documentation

Monlib.Preq.RCLikeLe

Extra lemmas on RCLike #

This file contains extra lemmas on RCLike.

theorem RCLike.le_def {K : semiOutParam (Type u_1)} [self : RCLike K] {z : K} {w : K} :
z w RCLike.re z RCLike.re w RCLike.im z = RCLike.im w

Alias of RCLike.le_iff_re_im.

theorem RCLike.lt_def {K : Type u_1} [RCLike K] {z : K} {w : K} :
z < w RCLike.re z < RCLike.re w RCLike.im z = RCLike.im w

Alias of RCLike.lt_iff_re_im.

theorem RCLike.nonneg_def {K : Type u_1} [RCLike K] {z : K} :
0 z 0 RCLike.re z RCLike.im z = 0

Alias of RCLike.nonneg_iff.

theorem RCLike.pos_def {K : Type u_1} [RCLike K] {z : K} :
0 < z 0 < RCLike.re z RCLike.im z = 0

Alias of RCLike.pos_iff.

theorem RCLike.nonpos_def {K : Type u_1} [RCLike K] {z : K} :
z 0 RCLike.re z 0 RCLike.im z = 0

Alias of RCLike.nonpos_iff.

theorem RCLike.neg_def {K : Type u_1} [RCLike K] {z : K} :
z < 0 RCLike.re z < 0 RCLike.im z = 0

Alias of RCLike.neg_iff.

theorem RCLike.nonneg_def' {𝕜 : Type u_1} [RCLike 𝕜] {x : 𝕜} :
0 x (RCLike.re x) = x 0 RCLike.re x
@[simp]
theorem RCLike.real_le_real {𝕜 : Type u_1} [RCLike 𝕜] {x : } {y : } :
x y x y
@[simp]
theorem RCLike.real_lt_real {𝕜 : Type u_1} [RCLike 𝕜] {x : } {y : } :
x < y x < y
@[simp]
theorem RCLike.zero_le_real {𝕜 : Type u_1} [RCLike 𝕜] {x : } :
0 x 0 x
@[simp]
theorem RCLike.zero_lt_real {𝕜 : Type u_1} [RCLike 𝕜] {x : } :
0 < x 0 < x
theorem RCLike.not_le_iff {𝕜 : Type u_1} [RCLike 𝕜] {z : 𝕜} {w : 𝕜} :
¬z w RCLike.re w < RCLike.re z RCLike.im z RCLike.im w
theorem RCLike.not_lt_iff {𝕜 : Type u_1} [RCLike 𝕜] {z : 𝕜} {w : 𝕜} :
¬z < w RCLike.re w RCLike.re z RCLike.im z RCLike.im w
theorem RCLike.not_le_zero_iff {𝕜 : Type u_1} [RCLike 𝕜] {z : 𝕜} :
¬z 0 0 < RCLike.re z RCLike.im z 0
theorem RCLike.not_lt_zero_iff {𝕜 : Type u_1} [RCLike 𝕜] {z : 𝕜} :
¬z < 0 0 RCLike.re z RCLike.im z 0
theorem RCLike.eq_re_ofReal_le {𝕜 : Type u_1} [RCLike 𝕜] {r : } {z : 𝕜} (hz : r z) :
z = (RCLike.re z)