Some stuff on star algebra equivalences #
This file contains some obvious definitions and lemmas on star algebra equivalences.
def
StarAlgEquiv.toLinearMap
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[Semiring R]
[AddCommMonoid A]
[AddCommMonoid B]
[Mul A]
[Mul B]
[Module R A]
[Module R B]
[Star A]
[Star B]
(f : A ≃⋆ₐ[R] B)
:
Equations
- f.toLinearMap = { toFun := fun (x : A) => f x, map_add' := ⋯, map_smul' := ⋯ }
Instances For
def
StarAlgEquiv.toLinearEquiv
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[Semiring R]
[AddCommMonoid A]
[AddCommMonoid B]
[Mul A]
[Mul B]
[Module R A]
[Module R B]
[Star A]
[Star B]
(f : A ≃⋆ₐ[R] B)
:
Equations
- f.toLinearEquiv = { toFun := fun (x : A) => f x, map_add' := ⋯, map_smul' := ⋯, invFun := fun (x : B) => f.symm x, left_inv := ⋯, right_inv := ⋯ }
Instances For
def
StarAlgEquiv.toAlgEquiv
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[Semiring B]
[Algebra R A]
[Algebra R B]
[Star A]
[Star B]
(f : A ≃⋆ₐ[R] B)
:
Equations
- f.toAlgEquiv = { toFun := fun (x : A) => f x, invFun := fun (x : B) => f.symm x, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯, map_add' := ⋯, commutes' := ⋯ }
Instances For
def
StarAlgEquiv.ofAlgEquiv
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[CommSemiring R]
[Semiring A]
[Semiring B]
[Algebra R A]
[Algebra R B]
[Star A]
[Star B]
(f : A ≃ₐ[R] B)
(hf : ∀ (x : A), f (star x) = star (f x))
:
Equations
- StarAlgEquiv.ofAlgEquiv f hf = { toFun := fun (x : A) => f x, invFun := fun (x : B) => f.symm x, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯, map_add' := ⋯, map_star' := ⋯, map_smul' := ⋯ }
Instances For
theorem
StarAlgEquiv.comp_eq_iff
{R : Type u_1}
{E₁ : Type u_2}
{E₂ : Type u_3}
{E₃ : Type u_4}
[CommSemiring R]
[AddCommMonoid E₁]
[AddCommMonoid E₂]
[AddCommMonoid E₃]
[Module R E₁]
[Module R E₂]
[Module R E₃]
[Star E₁]
[Star E₂]
[Mul E₁]
[Mul E₂]
(f : E₁ ≃⋆ₐ[R] E₂)
(x : E₂ →ₗ[R] E₃)
(y : E₁ →ₗ[R] E₃)
:
theorem
IsIdempotentElem.mulEquiv
{H₁ : Type u_2}
{H₂ : Type u_3}
[Mul H₁]
[Mul H₂]
{F : Type u_1}
[EquivLike F H₁ H₂]
[MulEquivClass F H₁ H₂]
{f : F}
{x : H₁}
:
IsIdempotentElem (f x) ↔ IsIdempotentElem x
theorem
IsIdempotentElem.algEquiv
{R : Type u_1}
{H₁ : Type u_2}
{H₂ : Type u_3}
[CommSemiring R]
[Semiring H₁]
[Semiring H₂]
[Algebra R H₁]
[Algebra R H₂]
(f : H₁ ≃ₐ[R] H₂)
{x : H₁}
:
IsIdempotentElem (f x) ↔ IsIdempotentElem x
theorem
isIdempotentElem_pi_iff
{ι : Type u_1}
{A : ι → Type u_2}
[(i : ι) → Mul (A i)]
{a : (i : ι) → A i}
:
IsIdempotentElem a ↔ ∀ (i : ι), IsIdempotentElem (a i)
theorem
MulEquiv.image_center
{F : Type u_1}
{A : Type u_2}
{B : Type u_3}
[Semigroup A]
[Semigroup B]
[EquivLike F A B]
[MulEquivClass F A B]
(f : F)
:
⇑f '' Set.center A = Set.center B
instance
instMulEquivClassOfNonUnitalAlgHomClass_monlib
{F : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[Monoid R]
[NonUnitalNonAssocSemiring A]
[NonUnitalNonAssocSemiring B]
[DistribMulAction R A]
[DistribMulAction R B]
[EquivLike F A B]
[NonUnitalAlgHomClass F R A B]
:
MulEquivClass F A B
Equations
- ⋯ = ⋯
theorem
NonUnitalAlgEquiv.image_span_center
{F : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[Semiring R]
[NonUnitalSemiring A]
[NonUnitalSemiring B]
[Module R A]
[Module R B]
[EquivLike F A B]
[NonUnitalAlgHomClass F R A B]
(f : F)
:
⇑f '' ↑(Submodule.span R (Set.center A)) = ↑(Submodule.span R (Set.center B))
theorem
NonUnitalAlgEquiv.map_span_center
{F : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[Semiring R]
[NonUnitalSemiring A]
[NonUnitalSemiring B]
[Module R A]
[Module R B]
[EquivLike F A B]
[NonUnitalAlgHomClass F R A B]
(f : F)
:
Submodule.map f (Submodule.span R (Set.center A)) = Submodule.span R (Set.center B)
def
StarAlgEquiv.piCongrRight
{R : Type u_1}
{ι : Type u_2}
{A₁ : ι → Type u_3}
{A₂ : ι → Type u_4}
[(i : ι) → Add (A₁ i)]
[(i : ι) → Add (A₂ i)]
[(i : ι) → Mul (A₁ i)]
[(i : ι) → Mul (A₂ i)]
[(i : ι) → Star (A₁ i)]
[(i : ι) → Star (A₂ i)]
[(i : ι) → SMul R (A₁ i)]
[(i : ι) → SMul R (A₂ i)]
(e : (i : ι) → A₁ i ≃⋆ₐ[R] A₂ i)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
StarAlgEquiv.piCongrRight_apply
{R : Type u_1}
{ι : Type u_2}
{A₁ : ι → Type u_3}
{A₂ : ι → Type u_4}
[(i : ι) → Add (A₁ i)]
[(i : ι) → Add (A₂ i)]
[(i : ι) → Mul (A₁ i)]
[(i : ι) → Mul (A₂ i)]
[(i : ι) → Star (A₁ i)]
[(i : ι) → Star (A₂ i)]
[(i : ι) → SMul R (A₁ i)]
[(i : ι) → SMul R (A₂ i)]
(e : (i : ι) → A₁ i ≃⋆ₐ[R] A₂ i)
(x : (i : ι) → A₁ i)
(j : ι)
:
(StarAlgEquiv.piCongrRight e) x j = (e j) (x j)
@[simp]
theorem
AlgEquiv.refl_toLinearMap
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
:
AlgEquiv.refl.toLinearMap = LinearMap.id