- Boxes
- definitions
- Ellipses
- theorems and lemmas
- Blue border
- the statement of this result is ready to be formalized; all prerequisites are done
- Orange border
- the statement of this result is not ready to be formalized; the blueprint needs more work
- Blue background
- the proof of this result is ready to be formalized; all prerequisites are done
- Green border
- the statement of this result is formalized
- Green background
- the proof of this result is formalized
- Dark green background
- the proof of this result and all its ancestors are formalized
Let \(\mathcal{H}_1,\mathcal{H}_2\) be Hilbert spaces, and let \(a,c\in \mathcal{H}_1\setminus \{ 0\} \) and \(b,d\in \mathcal{H}_2\setminus \{ 0\} \). Then if \(\left\lvert a\right\rangle \! \! \left\langle b\right\rvert =\left\lvert c\right\rangle \! \! \left\langle d\right\rvert \), then there exists some \(0\neq \alpha ,\beta \in \mathbb {C}\) such that \(a = \alpha c\) and \(b=\alpha \beta d\).
Let \(\mathcal{H}\) be a Hilbert space, and let \(x,y\in \mathcal{H}\). Then if \(\left\lvert x\right\rangle \! \! \left\langle x\right\rvert =\left\lvert y\right\rangle \! \! \left\langle y\right\rvert \), then there exists some \(0\neq \alpha \in \mathbb {C}\) such that \(x=\alpha {y}\) (i.e., they are co-linear).
Given a Hilbert space \(\mathcal{H}\), we have \({\mathcal{B}(\mathcal{H})}^\prime =\{ \alpha \operatorname {id}:\alpha \in \mathbb {C}\} \).
In other words, \(x\in \mathcal{B}(\mathcal{H})\) commutes with all operators \(y\in \mathcal{B}(\mathcal{H})\) if and only if \(x=\alpha \operatorname {id}\) for some \(\alpha \in \mathbb {C}\).
Given a linear functional \(\phi \colon {M_n}\to \mathbb {C}\), then the following are equivalent,
\(\phi \) is positive and faithful,
\(\phi _Q\) is pos-def and \(\forall {x}\in {M_n}:\phi (x)=\operatorname{Tr}(Qx)\),
\(M_n\times {M_n}\to \mathbb {C}\colon (x,y)\mapsto \phi (x^*y)\) defines an inner product on \(M_n\).
Given an algebra and co-algebra \((\mathcal{A},m,\eta ,\mu ,\varpi )\), then if
then we get the following equations (the Frobenius equations),
We say an algebra and co-algebra \((\mathcal{A},m,\eta ,\mu ,\varpi )\) is a Frobenius algebra when it satisfies the Frobenius equation condition,
Given \(A\in \mathcal{B}(\mathcal{H})\), we get \(\operatorname{Spectrum}({A}^{\operatorname {r}})=\overline{\operatorname{Spectrum}(A)}\).
In fact, \(x\in \ker (A-\lambda \operatorname {id})\) if and only if \(x^*\in \ker ({A}^{\operatorname {r}}-\bar{\lambda }\operatorname {id})\).
Given a Hermitian matrix \(x\in M_n\), we define the positive square root of the square of \(x\) to be \(\sqrt{x^2}\).
This is clearly positive semi-definite.
Explicitly, given the decomposition \(x=UDU^*\) where \(D\) is the diagonal of the eigenvalues of \(x\), then we have \(\sqrt{x^2}=U\left\lvert {D}\right\rvert U^*\).
Given a quantum set \((\mathcal{A},m,\eta ,\sigma _r)\), we get
Here, \(\varkappa \) is the identification \(\mathcal{A}\otimes \mathcal{A}\cong \mathcal{A}\otimes \mathcal{A}\) given by \(x\otimes y\mapsto y\otimes x\).
Given a quantum set \((\mathcal{A},m,\eta ,\sigma _r)\), we get
Here, \(\varkappa \) is the identification \(\mathcal{A}\otimes \mathcal{A}\cong \mathcal{A}\otimes \mathcal{A}\) given by \(x\otimes y\mapsto y\otimes x\).
For each \(i\), we fix a faithful and positive linear functional \(\psi _i\) on \(M_{n_i}\), and we let \(Q_i\in {M_{n_i}}\) denote the positive definite matrix such that \(\psi _i\colon x\mapsto \operatorname{Tr}(Q_ix)\) (so each \(Q_i=\sum _{j,k}\psi _i(e_{jk})e_{kj}\)) – see Proposition 4.1.1.
Let \(\psi \) be a faithful positive linear functional on \(\bigoplus _iM_{n_i}\) given by \(\psi =\sum _i\psi _i\circ p_i\), where each \(p_i\) is the projection map \(\bigoplus _jM_{n_j}\to M_{n_i}\), and we let \(Q=\bigoplus _iQ_i\). So then, given \(x\in \bigoplus _i{M_{n_i}}\), we get \(\psi (x)=\operatorname{Tr}(Q x)\), where \(\operatorname{Tr}\) here is defined by the sum of the diagonals in each matrix block.
By Theorem 4.1.10, we define the inner product on each \(M_{n_i}\) by
for all \(x,y\in {M_{n_i}}\). We denote \((M_{n_i},\psi _i)\) to be the Hilbert space given by this inner product.
We define the inner product on \(\bigoplus _iM_{n_i}\) by
for all \(x,y\in \bigoplus _i{M_{n_i}}\), where \(\operatorname{Tr}\) here is defined as the sum of the diagonals in each matrix block.
Given a \(^*\)-algebra \((\mathcal{A},m,\eta )\) that is also a finite-dimensional Hilbert space, we say it is a quantum set when there is a modular automorphism \(\sigma _t\colon \mathcal{A}\cong \mathcal{A}\), which is an algebra automorphism for each \(t\in \mathbb {R}\), and that the following properties are satisfied (for a fixed \(k\in \mathbb {R}\)):
\(\sigma _t\circ \sigma _s=\sigma _{t+s}\),
\(\sigma _t^{\operatorname {r}}=\sigma _{-t}\),
\(\sigma _t\) is self-adjoint,
\(\forall {x,y,z}\in \mathcal{A}:\left\langle xy \mid z\right\rangle =\left\langle y \mid \sigma _{-k}(x)^*z\right\rangle \),
\(\forall {x,y,z}\in \mathcal{A}:\left\langle xy \mid z\right\rangle =\left\langle x \mid z\sigma _{-k-1}(y^*)\right\rangle \).
By Proposition 3.1.4, we see that \((\mathcal{A},m,\eta ,k)\) is a Frobenius algebra.
And by Proposition 3.1.3, we can see that for any \(t\in \mathbb {R}\), we get \(\sigma _t\) is also a co-algebra homomorphism.
We can easily see that we get \(\left\langle x \mid y\right\rangle =\eta ^*(x^*\sigma _k(y))\) for all \(x,y\in \mathcal{A}\).
It is clear that we get \(\sigma _0=1\) and \(\sigma _{t}^{-1}=\sigma _{-t}\) for \(t\in \mathbb {R}\).
Given quantum sets \((\mathcal{A}_1,m_1,\eta _1,\sigma _r)\) and \((\mathcal{A}_2,m_2,\eta _2,\vartheta _r)\), then for each \(t,r\in \mathbb {R}\), we define \(\Psi _{t,r}\) to be the linear isomorphism from \(\mathcal{B}(\mathcal{A}_1,\mathcal{A}_2)\) to \(\mathcal{A}_2\otimes \mathcal{A}_1^{\operatorname {op}}\) given by
with inverse given by
A ket-bra operator \(\left\lvert \cdot \right\rangle \! \! \left\langle \cdot \right\rvert \) is defined as the linear map from \(E_2\) to the anti-linear map \(E_1\to \mathcal{B}(E_1,E_2)\) and is given by
This is exactly \(\left\lvert \cdot \right\rangle \! \! \left\langle \cdot \right\rvert =\left\lvert \cdot \right\rangle \, \circ \, \left\langle \cdot \right\rvert \).
Given quantum sets \((\mathcal{A}_1,m_1,\eta _1,\sigma _r)\) and \((\mathcal{A}_2,m_2,\eta _2,\vartheta _r)\), and elements \(a\in \mathcal{A}_1\) and \(b\in \mathcal{A}_2\), we get
Given orthonormal bases \(b=(b_i)\) and \(c=(c_j)\) of finite-dimensional Hilbert spaces \(\mathcal{H}_1,\mathcal{H}_2\), and elements \(x\in \mathcal{H}_1\) and \(y\in \mathcal{H}_2\), we have \(\mathcal{M}_{c,b}(\left\lvert x\right\rangle \! \! \left\langle y\right\rvert )=R_b(x){R_c(y)}^*\).
Given quantum sets \((B_1,m_1,\eta _1,\sigma _r)\) and \((B_2,m_2,\eta _2,\vartheta _r)\), we define the Schur product operator \(\cdot \bullet \cdot \colon \mathcal{B}(\mathcal{B}(B_1,B_2),\mathcal{B}(\mathcal{B}(B_1,B_2),\mathcal{B}(B_1,B_2)))\) as the map \(m_2(x\otimes y)m_1^*\).
Given \(a,c\in (B_1,m_1,\eta _1,\sigma _r)\) and \(b,d\in (B_2,m_2,\eta _2,\vartheta _r)\), we get
Given Hilbert spaces \(\mathcal{H}_1,\mathcal{H}_2,\mathcal{H}_3,\mathcal{H}_4\), and linear maps \(x\colon \mathcal{H}_1\to \mathcal{H}_2\) and \(y\colon \mathcal{H}_3\to \mathcal{H}_4\), we clearly get \({(x\otimes y)}^{\operatorname {r}}={x}^{\operatorname {r}}\otimes {y}^{\operatorname {r}}\).