Documentation

Monlib.LinearAlgebra.Ips.MulOp

Some results on the opposite vector space #

This file contains the construction of the basis of an opposite space; and the construction of the opposite inner product space.

noncomputable def Basis.mulOpposite {R : Type u_1} {H : Type u_2} [Ring R] [AddCommGroup H] [Module R H] {ι : Type u_3} [Fintype ι] (b : Basis ι R H) :
Equations
Instances For
    theorem Basis.mulOpposite_apply {R : Type u_2} {H : Type u_3} [Ring R] [AddCommGroup H] [Module R H] {ι : Type u_1} [Fintype ι] (b : Basis ι R H) (i : ι) :
    b.mulOpposite i = MulOpposite.op (b i)
    theorem Basis.mulOpposite_repr_eq {R : Type u_2} {H : Type u_3} [Ring R] [AddCommGroup H] [Module R H] {ι : Type u_1} [Fintype ι] (b : Basis ι R H) :
    b.mulOpposite.repr = (MulOpposite.opLinearEquiv R).symm ≪≫ₗ b.repr
    theorem Basis.mulOpposite_repr_apply {R : Type u_2} {H : Type u_3} [Ring R] [AddCommGroup H] [Module R H] {ι : Type u_1} [Fintype ι] (b : Basis ι R H) (x : Hᵐᵒᵖ) :
    b.mulOpposite.repr x = b.repr (MulOpposite.unop x)
    instance MulOpposite.hasInner {𝕜 : Type u_1} {H : Type u_2} [RCLike 𝕜] [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] :
    Equations
    theorem MulOpposite.inner_eq' {𝕜 : Type u_1} {H : Type u_2} [RCLike 𝕜] [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] (x : H) (y : H) :
    @[reducible]
    Equations
    theorem Basis.mulOpposite_is_orthonormal_iff {𝕜 : Type u_1} {H : Type u_2} [RCLike 𝕜] [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] {ι : Type u_3} [Fintype ι] (b : Basis ι 𝕜 H) :
    Orthonormal 𝕜 b Orthonormal 𝕜 b.mulOpposite
    noncomputable def OrthonormalBasis.mulOpposite {𝕜 : Type u_1} {H : Type u_2} [RCLike 𝕜] [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] {ι : Type u_3} [Fintype ι] (b : OrthonormalBasis ι 𝕜 H) :
    Equations
    • b.mulOpposite = b.toBasis.mulOpposite.toOrthonormalBasis
    Instances For
      instance MulOpposite.starModule {R : Type u_1} {H : Type u_2} [Star R] [SMul R H] [Star H] [StarModule R H] :
      Equations
      • =
      theorem MulOpposite.opLinearEquiv_adjoint {𝕜 : Type u_1} {A : Type u_2} [RCLike 𝕜] [NormedAddCommGroup A] [InnerProductSpace 𝕜 A] [FiniteDimensional 𝕜 A] :
      LinearMap.adjoint (MulOpposite.opLinearEquiv 𝕜) = (MulOpposite.opLinearEquiv 𝕜).symm
      theorem LinearMap.op_adjoint {𝕜 : Type u_1} {A : Type u_2} [RCLike 𝕜] [NormedAddCommGroup A] [InnerProductSpace 𝕜 A] [FiniteDimensional 𝕜 A] (x : A →ₗ[𝕜] A) :
      LinearMap.adjoint x.op = (LinearMap.adjoint x).op