rank one operators #
This defines the rank one operator $| x \rangle\langle y |$ for continuous linear maps
(see rank_one
) and linear maps (see rank_one_lm
).
@[simp]
theorem
bra_apply_apply
(๐ : Type u_1)
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
(x : E)
(w : E)
:
@[simp]
theorem
bra_toFun_toFun
(๐ : Type u_1)
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
(x : E)
(w : E)
:
@[simp]
theorem
bra_toFun_apply
(๐ : Type u_1)
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
(x : E)
(w : E)
:
@[simp]
theorem
bra_apply_toFun
(๐ : Type u_1)
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
(x : E)
(w : E)
:
noncomputable def
ket
(๐ : Type u_1)
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
:
Equations
Instances For
@[simp]
theorem
ket_apply_apply
(๐ : Type u_1)
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
(x : E)
(ฮฑ : ๐)
:
@[simp]
theorem
ket_toFun_apply
(๐ : Type u_1)
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
(x : E)
(ฮฑ : ๐)
:
@[simp]
theorem
ket_apply_toFun
(๐ : Type u_1)
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
(x : E)
(ฮฑ : ๐)
:
@[simp]
theorem
ket_toFun_toFun
(๐ : Type u_1)
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
(x : E)
(ฮฑ : ๐)
:
@[simp]
theorem
ket_one_apply
{๐ : Type u_1}
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
(x : E)
:
theorem
ket_RCLike
{๐ : Type u_1}
[RCLike ๐]
(x : ๐)
:
(ket ๐) x = (ContinuousLinearMap.mul ๐ ๐) x
theorem
ContinuousLinearMap.mul_one_apply
{๐ : Type u_1}
{๐' : Type u_2}
[NontriviallyNormedField ๐]
[SeminormedRing ๐']
[NormedSpace ๐ ๐']
[IsScalarTower ๐ ๐' ๐']
[SMulCommClass ๐ ๐' ๐']
:
(ContinuousLinearMap.mul ๐ ๐') 1 = 1
theorem
bra_RCLike
{๐ : Type u_1}
[RCLike ๐]
(x : ๐)
:
(bra ๐) x = (ContinuousLinearMap.mul ๐ ๐) ((starRingEnd ๐) x)
theorem
bra_adjoint_eq_ket
{๐ : Type u_1}
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
[CompleteSpace E]
(x : E)
:
theorem
ket_adjoint_eq_bra
{๐ : Type u_1}
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
[CompleteSpace E]
(x : E)
:
theorem
bra_ket_apply
{๐ : Type u_1}
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
(x : E)
(y : E)
:
theorem
bra_ket_one_eq_inner
{๐ : Type u_1}
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
(x : E)
(y : E)
:
theorem
continuousLinearMap_comp_ket
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
(f : Eโ โL[๐] Eโ)
(x : Eโ)
:
theorem
bra_comp_continuousLinearMap
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[CompleteSpace Eโ]
[CompleteSpace Eโ]
(x : Eโ)
(f : Eโ โL[๐] Eโ)
:
def
rankOne
(๐ : Type u_1)
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
:
we define the rank one operator $| x \rangle\langle y |$ by $x \mapsto \langle y,z\rangle x$
Instances For
@[simp]
theorem
rankOne_apply_apply_apply
(๐ : Type u_1)
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
(y : Eโ)
(z : Eโ)
:
@[simp]
theorem
rankOne_apply_apply_toFun
(๐ : Type u_1)
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
(y : Eโ)
(z : Eโ)
:
@[simp]
theorem
rankOne_apply
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{x : Eโ}
{y : Eโ}
(z : Eโ)
:
theorem
ket_bra_eq_rankOne
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{x : Eโ}
{y : Eโ}
:
theorem
ket_eq_rankOne_one
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
:
theorem
bra_eq_one_rankOne
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
:
@[simp]
theorem
rankOne.smul_real_apply
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{x : Eโ}
{y : Eโ}
{ฮฑ : โ}
:
@[simp]
theorem
rankOne.apply_rankOne
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{Eโ : Type u_4}
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
(y : Eโ)
(z : Eโ)
(w : Eโ)
:
$| x \rangle\langle y | | z \rangle\langle w | = \langle y, z \rangle \cdot | x \rangle\langle w |$
theorem
ContinuousLinearMap.comp_rankOne
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{Eโ : Type u_4}
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
(y : Eโ)
(u : Eโ โL[๐] Eโ)
:
$u \circ | x \rangle\langle y | = | u(x) \rangle\langle y |$
theorem
ContinuousLinearMap.rankOne_comp
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{Eโ : Type u_4}
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[CompleteSpace Eโ]
[CompleteSpace Eโ]
(x : Eโ)
(y : Eโ)
(u : Eโ โL[๐] Eโ)
:
$| x \rangle\langle y | \circ u = | x \rangle\langle u^*(y) |$
theorem
rankOne_self_isIdempotentElem_of_normOne
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{x : Eโ}
(h : โxโ = 1)
:
IsIdempotentElem (((rankOne ๐) x) x)
rank one operators given by norm one vectors are automatically idempotent
theorem
rankOne_self_isSymmetric
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{x : Eโ}
:
(โ(((rankOne ๐) x) x)).IsSymmetric
@[simp]
theorem
rankOne_self_isSelfAdjoint
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[CompleteSpace Eโ]
{x : Eโ}
:
IsSelfAdjoint (((rankOne ๐) x) x)
rank one operators are automatically self-adjoint
theorem
rankOne_adjoint
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[CompleteSpace Eโ]
[CompleteSpace Eโ]
(x : Eโ)
(y : Eโ)
:
$| x \rangle\langle y |^* = | y \rangle\langle x |$
theorem
rankOne_inner_left
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
(w : Eโ)
(y : Eโ)
(z : Eโ)
:
theorem
rankOne_inner_right
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
(y : Eโ)
(z : Eโ)
(w : Eโ)
:
theorem
ContinuousLinearMap.commutes_with_all_iff
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[CompleteSpace Eโ]
{T : Eโ โL[๐] Eโ}
:
theorem
ContinuousLinearMap.centralizer
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[CompleteSpace Eโ]
:
theorem
ContinuousLinearMap.scalar_centralizer
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
:
theorem
ContinuousLinearMap.centralizer_centralizer
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[CompleteSpace Eโ]
:
Set.univ.centralizer.centralizer = Set.univ
theorem
colinear_of_rankOne_self_eq_rankOne_self
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
(y : Eโ)
(h : ((rankOne ๐) x) x = ((rankOne ๐) y) y)
:
theorem
colinear_of_ne_zero_rankOne_eq_rankOne
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[CompleteSpace Eโ]
[CompleteSpace Eโ]
{a : Eโ}
{c : Eโ}
{b : Eโ}
{d : Eโ}
(h : ((rankOne ๐) a) b = ((rankOne ๐) c) d)
(ha : a โ 0)
(hb : b โ 0)
:
theorem
ket_eq_ket_iff
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{x : Eโ}
{y : Eโ}
:
theorem
bra_eq_bra_iff
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{x : Eโ}
{y : Eโ}
:
theorem
ContinuousLinearMap.ext_inner_map
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{F : Type u_4}
[NormedAddCommGroup F]
[InnerProductSpace ๐ F]
(T : Eโ โL[๐] F)
(S : Eโ โL[๐] F)
:
theorem
LinearMap.ext_inner_map
{๐ : Type u_1}
{Eโ : Type u_2}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
{F : Type u_4}
[NormedAddCommGroup F]
[InnerProductSpace ๐ F]
(T : Eโ โโ[๐] F)
(S : Eโ โโ[๐] F)
:
theorem
ContinuousLinearMap.exists_sum_rankOne
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[FiniteDimensional ๐ Eโ]
[FiniteDimensional ๐ Eโ]
(T : Eโ โL[๐] Eโ)
:
โ (x : Fin (Module.finrank ๐ Eโ) ร Fin (Module.finrank ๐ Eโ) โ Eโ) (y :
Fin (Module.finrank ๐ Eโ) ร Fin (Module.finrank ๐ Eโ) โ Eโ),
T = โ i : Fin (Module.finrank ๐ Eโ) ร Fin (Module.finrank ๐ Eโ), ((rankOne ๐) (x i)) (y i)
theorem
LinearMap.exists_sum_rankOne
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[FiniteDimensional ๐ Eโ]
[FiniteDimensional ๐ Eโ]
(T : Eโ โโ[๐] Eโ)
:
โ (x : Fin (Module.finrank ๐ Eโ) ร Fin (Module.finrank ๐ Eโ) โ Eโ) (y :
Fin (Module.finrank ๐ Eโ) ร Fin (Module.finrank ๐ Eโ) โ Eโ),
T = โ i : Fin (Module.finrank ๐ Eโ) ร Fin (Module.finrank ๐ Eโ), โ(((rankOne ๐) (x i)) (y i))
theorem
rankOne.sum_orthonormalBasis_eq_id
{๐ : Type u_4}
{E : Type u_5}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
{ฮน : Type u_6}
[Fintype ฮน]
(b : OrthonormalBasis ฮน ๐ E)
:
theorem
ContinuousLinearMap.ext_of_rankOne
{๐ : Type u_1}
{Hโ : Type u_2}
{Hโ : Type u_3}
{H' : Type u_4}
[RCLike ๐]
[NormedAddCommGroup H']
[Module ๐ H']
[NormedAddCommGroup Hโ]
[InnerProductSpace ๐ Hโ]
[NormedAddCommGroup Hโ]
[InnerProductSpace ๐ Hโ]
[FiniteDimensional ๐ Hโ]
[FiniteDimensional ๐ Hโ]
{x : (Hโ โL[๐] Hโ) โL[๐] H'}
{y : (Hโ โL[๐] Hโ) โL[๐] H'}
(h : โ (a : Hโ) (b : Hโ), x (((rankOne ๐) a) b) = y (((rankOne ๐) a) b))
:
x = y
theorem
LinearMap.ext_of_rankOne
{๐ : Type u_1}
{Hโ : Type u_2}
{Hโ : Type u_3}
{H' : Type u_4}
[RCLike ๐]
[AddCommMonoid H']
[Module ๐ H']
[NormedAddCommGroup Hโ]
[InnerProductSpace ๐ Hโ]
[NormedAddCommGroup Hโ]
[InnerProductSpace ๐ Hโ]
[FiniteDimensional ๐ Hโ]
[FiniteDimensional ๐ Hโ]
{x : (Hโ โL[๐] Hโ) โโ[๐] H'}
{y : (Hโ โL[๐] Hโ) โโ[๐] H'}
(h : โ (a : Hโ) (b : Hโ), x (((rankOne ๐) a) b) = y (((rankOne ๐) a) b))
:
x = y
theorem
AddMonoidHom.ext_of_rank_one'
{๐ : Type u_1}
{Hโ : Type u_2}
{Hโ : Type u_3}
{H' : Type u_4}
[RCLike ๐]
[AddCommMonoid H']
[Module ๐ H']
[NormedAddCommGroup Hโ]
[InnerProductSpace ๐ Hโ]
[NormedAddCommGroup Hโ]
[InnerProductSpace ๐ Hโ]
[FiniteDimensional ๐ Hโ]
[FiniteDimensional ๐ Hโ]
{x : (Hโ โโ[๐] Hโ) โ+ H'}
{y : (Hโ โโ[๐] Hโ) โ+ H'}
(h : โ (a : Hโ) (b : Hโ), x โ(((rankOne ๐) a) b) = y โ(((rankOne ๐) a) b))
:
x = y
theorem
LinearMap.ext_of_rank_one'
{๐ : Type u_1}
{Hโ : Type u_2}
{Hโ : Type u_3}
{H' : Type u_4}
[RCLike ๐]
[AddCommMonoid H']
[Module ๐ H']
[NormedAddCommGroup Hโ]
[InnerProductSpace ๐ Hโ]
[NormedAddCommGroup Hโ]
[InnerProductSpace ๐ Hโ]
[FiniteDimensional ๐ Hโ]
[FiniteDimensional ๐ Hโ]
{x : (Hโ โโ[๐] Hโ) โโ[๐] H'}
{y : (Hโ โโ[๐] Hโ) โโ[๐] H'}
(h : โ (a : Hโ) (b : Hโ), x โ(((rankOne ๐) a) b) = y โ(((rankOne ๐) a) b))
:
x = y
theorem
rankOne.sum_orthonormalBasis_eq_id_lm
{๐ : Type u_1}
{E : Type u_2}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
{ฮน : Type u_3}
[Fintype ฮน]
(b : OrthonormalBasis ฮน ๐ E)
:
theorem
ContinuousLinearMap.coe_eq_zero
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
(f : Eโ โL[๐] Eโ)
:
theorem
rankOne.eq_zero_iff
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
(y : Eโ)
:
theorem
LinearMap.rankOne_comp
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
{Eโ : Type u_4}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
[FiniteDimensional ๐ Eโ]
[FiniteDimensional ๐ Eโ]
(x : Eโ)
(y : Eโ)
(u : Eโ โโ[๐] Eโ)
:
theorem
LinearMap.rankOne_comp'
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
{Eโ : Type u_4}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
[FiniteDimensional ๐ Eโ]
[FiniteDimensional ๐ Eโ]
(x : Eโ)
(y : Eโ)
(u : Eโ โโ[๐] Eโ)
:
theorem
OrthonormalBasis.orthogonalProjection'_eq_sum_rankOne
{ฮน : Type u_1}
{๐ : Type u_2}
[RCLike ๐]
{E : Type u_3}
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype ฮน]
{U : Submodule ๐ E}
[CompleteSpace โฅU]
(b : OrthonormalBasis ฮน ๐ โฅU)
:
orthogonalProjection' U = โ i : ฮน, ((rankOne ๐) โ(b i)) โ(b i)
theorem
LinearMap.comp_rankOne
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
{Eโ : Type u_4}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
(y : Eโ)
(u : Eโ โโ[๐] Eโ)
:
theorem
rankOne_smul_smul
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
(y : Eโ)
(rโ : ๐)
(rโ : ๐)
:
theorem
rankOne_lm_smul_smul
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
(x : Eโ)
(y : Eโ)
(rโ : ๐)
(rโ : ๐)
:
theorem
rankOne_lm_sum_sum
{๐ : Type u_1}
{Eโ : Type u_2}
{Eโ : Type u_3}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
{ฮนโ : Type u_4}
{ฮนโ : Type u_5}
{k : Finset ฮนโ}
{kโ : Finset ฮนโ}
(f : ฮนโ โ Eโ)
(g : ฮนโ โ Eโ)
:
theorem
ContinuousLinearMap.linearMap_adjoint
{๐ : Type u_1}
{B : Type u_2}
{C : Type u_3}
[RCLike ๐]
[NormedAddCommGroup B]
[NormedAddCommGroup C]
[InnerProductSpace ๐ B]
[InnerProductSpace ๐ C]
[FiniteDimensional ๐ B]
[FiniteDimensional ๐ C]
(x : B โL[๐] C)
:
LinearMap.adjoint โx = โ(ContinuousLinearMap.adjoint x)
theorem
LinearMap.toContinuousLinearMap_adjoint
{๐ : Type u_1}
{B : Type u_2}
{C : Type u_3}
[RCLike ๐]
[NormedAddCommGroup B]
[NormedAddCommGroup C]
[InnerProductSpace ๐ B]
[InnerProductSpace ๐ C]
[FiniteDimensional ๐ B]
[FiniteDimensional ๐ C]
{x : B โโ[๐] C}
:
ContinuousLinearMap.adjoint (LinearMap.toContinuousLinearMap x) = LinearMap.toContinuousLinearMap (LinearMap.adjoint x)
theorem
LinearMap.toContinuousLinearMap_adjoint'
{๐ : Type u_1}
{B : Type u_2}
{C : Type u_3}
[RCLike ๐]
[NormedAddCommGroup B]
[NormedAddCommGroup C]
[InnerProductSpace ๐ B]
[InnerProductSpace ๐ C]
[FiniteDimensional ๐ B]
[FiniteDimensional ๐ C]
{x : B โโ[๐] C}
:
โ(ContinuousLinearMap.adjoint (LinearMap.toContinuousLinearMap x)) = LinearMap.adjoint x
theorem
OrthonormalBasis.repr_adjoint
{ฮน : Type u_1}
{๐ : Type u_2}
{E : Type u_3}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype ฮน]
(b : OrthonormalBasis ฮน ๐ E)
:
ContinuousLinearMap.adjoint โb.repr.toContinuousLinearEquiv = โb.repr.symm.toContinuousLinearEquiv
theorem
OrthonormalBasis.repr_adjoint'
{ฮน : Type u_1}
{๐ : Type u_2}
{E : Type u_3}
[RCLike ๐]
[NormedAddCommGroup E]
[InnerProductSpace ๐ E]
[Fintype ฮน]
(b : OrthonormalBasis ฮน ๐ E)
:
LinearMap.adjoint โb.repr.toLinearEquiv = โb.repr.symm.toLinearEquiv
theorem
rankOne_toMatrix_of_onb
{ฮนโ : Type u_1}
{ฮนโ : Type u_2}
{๐ : Type u_3}
{Eโ : Type u_4}
{Eโ : Type u_5}
[RCLike ๐]
[NormedAddCommGroup Eโ]
[NormedAddCommGroup Eโ]
[InnerProductSpace ๐ Eโ]
[InnerProductSpace ๐ Eโ]
[Fintype ฮนโ]
[Fintype ฮนโ]
[DecidableEq ฮนโ]
[DecidableEq ฮนโ]
(bโ : OrthonormalBasis ฮนโ ๐ Eโ)
(bโ : OrthonormalBasis ฮนโ ๐ Eโ)
(x : Eโ)
(y : Eโ)
:
(LinearMap.toMatrix bโ.toBasis bโ.toBasis) โ(((rankOne ๐) x) y) = Matrix.col (Fin 1) (bโ.repr x) * (Matrix.col (Fin 1) (bโ.repr y)).conjTranspose