Documentation

Monlib.LinearAlgebra.Ips.Basic

Some obvious basic properties on inner product space #

This files provides some useful and obvious results for linear maps and continuous linear maps.

theorem ext_inner_left_iff {š•œ : Type u_1} {E : Type u_2} [RCLike š•œ] [NormedAddCommGroup E] [InnerProductSpace š•œ E] (x : E) (y : E) :
x = y ā†” āˆ€ (v : E), inner x v = inner y v
theorem inner_self_re {š•œ : Type u_1} {E : Type u_2} [RCLike š•œ] [NormedAddCommGroup E] [InnerProductSpace š•œ E] (x : E) :
ā†‘(RCLike.re (inner x x)) = inner x x
theorem forall_inner_eq_zero_iff {š•œ : Type u_1} {E : Type u_2} [RCLike š•œ] [NormedAddCommGroup E] [InnerProductSpace š•œ E] (x : E) :
(āˆ€ (y : E), inner x y = 0) ā†” x = 0
theorem LinearMap.ext_iff_inner_map {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace ā„‚ E] (p : E ā†’ā‚—[ā„‚] E) (q : E ā†’ā‚—[ā„‚] E) :
p = q ā†” āˆ€ (x : E), inner (p x) x = inner (q x) x

linear maps $p,q$ are equal if and only if $\langle p x, x \rangle = \langle q x, x \rangle$ for any $x$.

theorem ContinuousLinearMap.ext_iff_inner_map {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace ā„‚ E] (p : E ā†’L[ā„‚] E) (q : E ā†’L[ā„‚] E) :
p = q ā†” āˆ€ (x : E), inner (p x) x = inner (q x) x

copy of linear_map.ext_iff_inner_map but for continuous linear maps

theorem ContinuousLinearMap.IsSelfAdjoint.ext_iff_inner_map {E : Type u_2} {š•œ : Type u_3} [RCLike š•œ] [NormedAddCommGroup E] [InnerProductSpace š•œ E] [CompleteSpace E] {p : E ā†’L[š•œ] E} {q : E ā†’L[š•œ] E} (hp : IsSelfAdjoint p) (hq : IsSelfAdjoint q) :
p = q ā†” āˆ€ (x : E), inner (p x) x = inner (q x) x

Self-adjoint linear operators $p,q$ are equal if and only if $\langle p x, x \rangle_\mathbb{k} = \langle q x, x \rangle_\mathbb{k}$.

theorem isSelfAdjoint_iff_complex_inner_re_eq {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace ā„‚ E] [CompleteSpace E] {a : E ā†’L[ā„‚] E} :
IsSelfAdjoint a ā†” āˆ€ (x : E), ā†‘(RCLike.re (inner (a x) x)) = inner (a x) x

in a complex inner product space, we have that an operator $a$ is self-adjoint if and only if $\langle a x, x \rangle_\mathbb{C}$ is real for all $x \in E$

theorem IsSelfAdjoint.adjoint {E : Type u_1} [NormedAddCommGroup E] {š•œ : Type u_2} [RCLike š•œ] [InnerProductSpace š•œ E] [CompleteSpace E] {a : E ā†’L[š•œ] E} (ha : IsSelfAdjoint a) :
IsSelfAdjoint (ContinuousLinearMap.adjoint a)

the adjoint of a self-adjoint operator is self-adjoint

theorem IsSelfAdjoint.inner_re_eq {š•œ : Type u_3} [RCLike š•œ] {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace š•œ E] [CompleteSpace E] {a : E ā†’L[š•œ] E} (ha : IsSelfAdjoint a) (x : E) :
ā†‘(RCLike.re (inner (a x) x)) = inner (a x) x

for a self-adjoint operator $a$, we have $\langle a x, x \rangle_\mathbb{k}$ is real

theorem ContinuousLinearMap.inner_map_self_eq_zero {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace ā„‚ E] {p : E ā†’L[ā„‚] E} :
(āˆ€ (x : E), inner (p x) x = 0) ā†” p = 0

copy of inner_map_self_eq_zero for bounded linear maps

theorem ContinuousLinearMap.adjoint_smul {K : Type u_2} {Eā‚ : Type u_3} {Eā‚‚ : Type u_4} [RCLike K] [NormedAddCommGroup Eā‚] [NormedAddCommGroup Eā‚‚] [InnerProductSpace K Eā‚] [InnerProductSpace K Eā‚‚] [CompleteSpace Eā‚] [CompleteSpace Eā‚‚] (Ļ† : Eā‚ ā†’L[K] Eā‚‚) (a : K) :
ContinuousLinearMap.adjoint (a ā€¢ Ļ†) = (starRingEnd K) a ā€¢ ContinuousLinearMap.adjoint Ļ†
theorem LinearMap.adjoint_smul {K : Type u_2} {Eā‚ : Type u_3} {Eā‚‚ : Type u_4} [RCLike K] [NormedAddCommGroup Eā‚] [NormedAddCommGroup Eā‚‚] [InnerProductSpace K Eā‚] [InnerProductSpace K Eā‚‚] [FiniteDimensional K Eā‚] [FiniteDimensional K Eā‚‚] (Ļ† : Eā‚ ā†’ā‚—[K] Eā‚‚) (a : K) :
LinearMap.adjoint (a ā€¢ Ļ†) = (starRingEnd K) a ā€¢ LinearMap.adjoint Ļ†
theorem LinearMap.adjoint_one {K : Type u_2} {E : Type u_3} [RCLike K] [NormedAddCommGroup E] [InnerProductSpace K E] [FiniteDimensional K E] :
LinearMap.adjoint 1 = 1
theorem inner_self_nonneg' {š•œ : Type u_2} [RCLike š•œ] {E : Type u_3} [NormedAddCommGroup E] [InnerProductSpace š•œ E] {x : E} :
theorem inner_self_nonpos' {š•œ : Type u_2} [RCLike š•œ] {E : Type u_3} [NormedAddCommGroup E] [InnerProductSpace š•œ E] {x : E} :
inner x x ā‰¤ 0 ā†” x = 0
theorem isometry_iff_norm {E : Type u_4} {F : Type u_5} [SeminormedAddGroup E] [SeminormedAddGroup F] {e : Type u_3} [FunLike e E F] [AddMonoidHomClass e E F] (f : e) :
Isometry ā‡‘f ā†” āˆ€ (x : E), ā€–f xā€– = ā€–xā€–
theorem isometry_iff_norm' {E : Type u_4} {F : Type u_5} [NormedAddCommGroup E] [NormedAddCommGroup F] {e : Type u_3} [FunLike e E F] [AddMonoidHomClass e E F] (f : e) :
Isometry ā‡‘f ā†” āˆ€ (x : E), ā€–f xā€– = ā€–xā€–
theorem isometry_iff_inner {R : Type u_4} {E : Type u_5} {F : Type u_6} [RCLike R] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace R E] [InnerProductSpace R F] {M : Type u_3} [FunLike M E F] [LinearMapClass M R E F] (f : M) :
Isometry ā‡‘f ā†” āˆ€ (x y : E), inner (f x) (f y) = inner x y
theorem isometry_iff_inner_norm' {R : Type u_4} {E : Type u_5} {F : Type u_6} [RCLike R] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace R E] [InnerProductSpace R F] {M : Type u_3} [FunLike M E F] [LinearMapClass M R E F] (f : M) :
(āˆ€ (x : E), ā€–f xā€– = ā€–xā€–) ā†” āˆ€ (x y : E), inner (f x) (f y) = inner x y