Some obvious basic properties on inner product space #
This files provides some useful and obvious results for linear maps and continuous linear maps.
theorem
ext_inner_left_iff
{š : Type u_1}
{E : Type u_2}
[RCLike š]
[NormedAddCommGroup E]
[InnerProductSpace š E]
(x : E)
(y : E)
:
theorem
inner_self_re
{š : Type u_1}
{E : Type u_2}
[RCLike š]
[NormedAddCommGroup E]
[InnerProductSpace š E]
(x : E)
:
theorem
forall_inner_eq_zero_iff
{š : Type u_1}
{E : Type u_2}
[RCLike š]
[NormedAddCommGroup E]
[InnerProductSpace š E]
(x : E)
:
theorem
LinearMap.ext_iff_inner_map
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ā E]
(p : E āā[ā] E)
(q : E āā[ā] E)
:
linear maps $p,q$ are equal if and only if $\langle p x, x \rangle = \langle q x, x \rangle$ for any $x$.
theorem
ContinuousLinearMap.ext_iff_inner_map
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ā E]
(p : E āL[ā] E)
(q : E āL[ā] E)
:
copy of linear_map.ext_iff_inner_map
but for continuous linear maps
theorem
ContinuousLinearMap.IsSelfAdjoint.ext_iff_inner_map
{E : Type u_2}
{š : Type u_3}
[RCLike š]
[NormedAddCommGroup E]
[InnerProductSpace š E]
[CompleteSpace E]
{p : E āL[š] E}
{q : E āL[š] E}
(hp : IsSelfAdjoint p)
(hq : IsSelfAdjoint q)
:
Self-adjoint linear operators $p,q$ are equal if and only if $\langle p x, x \rangle_\mathbb{k} = \langle q x, x \rangle_\mathbb{k}$.
theorem
isSelfAdjoint_iff_complex_inner_re_eq
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ā E]
[CompleteSpace E]
{a : E āL[ā] E}
:
IsSelfAdjoint a ā ā (x : E), ā(RCLike.re (inner (a x) x)) = inner (a x) x
in a complex inner product space, we have that an operator $a$ is self-adjoint if and only if $\langle a x, x \rangle_\mathbb{C}$ is real for all $x \in E$
theorem
IsSelfAdjoint.adjoint
{E : Type u_1}
[NormedAddCommGroup E]
{š : Type u_2}
[RCLike š]
[InnerProductSpace š E]
[CompleteSpace E]
{a : E āL[š] E}
(ha : IsSelfAdjoint a)
:
IsSelfAdjoint (ContinuousLinearMap.adjoint a)
the adjoint of a self-adjoint operator is self-adjoint
theorem
IsSelfAdjoint.inner_re_eq
{š : Type u_3}
[RCLike š]
{E : Type u_2}
[NormedAddCommGroup E]
[InnerProductSpace š E]
[CompleteSpace E]
{a : E āL[š] E}
(ha : IsSelfAdjoint a)
(x : E)
:
for a self-adjoint operator $a$, we have $\langle a x, x \rangle_\mathbb{k}$ is real
theorem
ContinuousLinearMap.inner_map_self_eq_zero
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ā E]
{p : E āL[ā] E}
:
copy of inner_map_self_eq_zero
for bounded linear maps
theorem
ContinuousLinearMap.adjoint_smul
{K : Type u_2}
{Eā : Type u_3}
{Eā : Type u_4}
[RCLike K]
[NormedAddCommGroup Eā]
[NormedAddCommGroup Eā]
[InnerProductSpace K Eā]
[InnerProductSpace K Eā]
[CompleteSpace Eā]
[CompleteSpace Eā]
(Ļ : Eā āL[K] Eā)
(a : K)
:
ContinuousLinearMap.adjoint (a ā¢ Ļ) = (starRingEnd K) a ā¢ ContinuousLinearMap.adjoint Ļ
theorem
LinearMap.adjoint_smul
{K : Type u_2}
{Eā : Type u_3}
{Eā : Type u_4}
[RCLike K]
[NormedAddCommGroup Eā]
[NormedAddCommGroup Eā]
[InnerProductSpace K Eā]
[InnerProductSpace K Eā]
[FiniteDimensional K Eā]
[FiniteDimensional K Eā]
(Ļ : Eā āā[K] Eā)
(a : K)
:
LinearMap.adjoint (a ā¢ Ļ) = (starRingEnd K) a ā¢ LinearMap.adjoint Ļ
theorem
LinearMap.adjoint_one
{K : Type u_2}
{E : Type u_3}
[RCLike K]
[NormedAddCommGroup E]
[InnerProductSpace K E]
[FiniteDimensional K E]
:
LinearMap.adjoint 1 = 1
theorem
inner_self_nonneg'
{š : Type u_2}
[RCLike š]
{E : Type u_3}
[NormedAddCommGroup E]
[InnerProductSpace š E]
{x : E}
:
theorem
inner_self_nonpos'
{š : Type u_2}
[RCLike š]
{E : Type u_3}
[NormedAddCommGroup E]
[InnerProductSpace š E]
{x : E}
:
theorem
isometry_iff_norm
{E : Type u_4}
{F : Type u_5}
[SeminormedAddGroup E]
[SeminormedAddGroup F]
{e : Type u_3}
[FunLike e E F]
[AddMonoidHomClass e E F]
(f : e)
:
theorem
isometry_iff_norm'
{E : Type u_4}
{F : Type u_5}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
{e : Type u_3}
[FunLike e E F]
[AddMonoidHomClass e E F]
(f : e)
:
theorem
isometry_iff_inner
{R : Type u_4}
{E : Type u_5}
{F : Type u_6}
[RCLike R]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace R E]
[InnerProductSpace R F]
{M : Type u_3}
[FunLike M E F]
[LinearMapClass M R E F]
(f : M)
:
theorem
isometry_iff_inner_norm'
{R : Type u_4}
{E : Type u_5}
{F : Type u_6}
[RCLike R]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace R E]
[InnerProductSpace R F]
{M : Type u_3}
[FunLike M E F]
[LinearMapClass M R E F]
(f : M)
:
theorem
seminormedAddGroup_norm_eq_norm_NormedAddCommGroup
{E : Type u_3}
[NormedAddCommGroup E]
(x : E)
: