Tensor product of inner product spaces #
This file constructs the tensor product of finite-dimensional inner product spaces.
noncomputable instance
TensorProduct.Inner
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
:
Inner 𝕜 (TensorProduct 𝕜 E F)
Equations
- One or more equations did not get rendered due to their size.
theorem
TensorProduct.inner_tmul
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(x : E)
(z : E)
(y : F)
(w : F)
:
theorem
TensorProduct.inner_add_left
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(x : TensorProduct 𝕜 E F)
(y : TensorProduct 𝕜 E F)
(z : TensorProduct 𝕜 E F)
:
theorem
TensorProduct.inner_zero_right
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(x : TensorProduct 𝕜 E F)
:
theorem
TensorProduct.inner_conj_symm
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(x : TensorProduct 𝕜 E F)
(y : TensorProduct 𝕜 E F)
:
(starRingEnd 𝕜) (inner x y) = inner y x
theorem
TensorProduct.inner_zero_left
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(x : TensorProduct 𝕜 E F)
:
theorem
TensorProduct.inner_add_right
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(x : TensorProduct 𝕜 E F)
(y : TensorProduct 𝕜 E F)
(z : TensorProduct 𝕜 E F)
:
theorem
TensorProduct.inner_sum
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
{n : Type u_4}
[Fintype n]
(x : n → TensorProduct 𝕜 E F)
(y : TensorProduct 𝕜 E F)
:
theorem
TensorProduct.sum_inner
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
{n : Type u_4}
[Fintype n]
(y : TensorProduct 𝕜 E F)
(x : n → TensorProduct 𝕜 E F)
:
theorem
TensorProduct.inner_nonneg_re
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(x : TensorProduct 𝕜 E F)
:
theorem
TensorProduct.eq_span
{𝕜 : Type u_4}
{E : Type u_5}
{F : Type u_6}
[RCLike 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
[AddCommGroup F]
[Module 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(x : TensorProduct 𝕜 E F)
:
∃ (α : ↑(Basis.ofVectorSpaceIndex 𝕜 E) × ↑(Basis.ofVectorSpaceIndex 𝕜 F) → E) (β :
↑(Basis.ofVectorSpaceIndex 𝕜 E) × ↑(Basis.ofVectorSpaceIndex 𝕜 F) → F),
∑ i : ↑(Basis.ofVectorSpaceIndex 𝕜 E) × ↑(Basis.ofVectorSpaceIndex 𝕜 F), α i ⊗ₜ[𝕜] β i = x
@[reducible]
noncomputable instance
TensorProduct.normedAddCommGroup
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
:
NormedAddCommGroup (TensorProduct 𝕜 E F)
Equations
- TensorProduct.normedAddCommGroup = InnerProductSpace.Core.toNormedAddCommGroup
@[reducible]
noncomputable instance
TensorProduct.innerProductSpace
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
:
InnerProductSpace 𝕜 (TensorProduct 𝕜 E F)
Equations
- One or more equations did not get rendered due to their size.
theorem
TensorProduct.lid_adjoint
{𝕜 : Type u_1}
{E : Type u_2}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[FiniteDimensional 𝕜 E]
:
LinearMap.adjoint ↑(TensorProduct.lid 𝕜 E) = ↑(TensorProduct.lid 𝕜 E).symm
theorem
TensorProduct.comm_adjoint
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
:
LinearMap.adjoint ↑(TensorProduct.comm 𝕜 E F) = ↑(TensorProduct.comm 𝕜 E F).symm
theorem
TensorProduct.assoc_symm_adjoint
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
{G : Type u_4}
[NormedAddCommGroup G]
[InnerProductSpace 𝕜 G]
[FiniteDimensional 𝕜 G]
:
LinearMap.adjoint ↑(TensorProduct.assoc 𝕜 E F G).symm = ↑(TensorProduct.assoc 𝕜 E F G)
theorem
TensorProduct.assoc_adjoint
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
{G : Type u_4}
[NormedAddCommGroup G]
[InnerProductSpace 𝕜 G]
[FiniteDimensional 𝕜 G]
:
LinearMap.adjoint ↑(TensorProduct.assoc 𝕜 E F G) = ↑(TensorProduct.assoc 𝕜 E F G).symm
theorem
TensorProduct.map_adjoint
{𝕜 : Type u_1}
[RCLike 𝕜]
{A : Type u_4}
{B : Type u_5}
{C : Type u_6}
{D : Type u_7}
[NormedAddCommGroup A]
[NormedAddCommGroup B]
[NormedAddCommGroup C]
[NormedAddCommGroup D]
[InnerProductSpace 𝕜 A]
[InnerProductSpace 𝕜 B]
[InnerProductSpace 𝕜 C]
[InnerProductSpace 𝕜 D]
[FiniteDimensional 𝕜 A]
[FiniteDimensional 𝕜 B]
[FiniteDimensional 𝕜 C]
[FiniteDimensional 𝕜 D]
(f : A →ₗ[𝕜] B)
(g : C →ₗ[𝕜] D)
:
LinearMap.adjoint (TensorProduct.map f g) = TensorProduct.map (LinearMap.adjoint f) (LinearMap.adjoint g)
theorem
TensorProduct.inner_ext_iff
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(x : E)
(z : E)
(y : F)
(w : F)
:
theorem
TensorProduct.forall_inner_eq_zero
{𝕜 : Type u_4}
{E : Type u_5}
{F : Type u_6}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(x : TensorProduct 𝕜 E F)
:
theorem
TensorProduct.inner_ext_iff'
{𝕜 : Type u_4}
{E : Type u_5}
{F : Type u_6}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(x : TensorProduct 𝕜 E F)
(y : TensorProduct 𝕜 E F)
:
theorem
TensorProduct.lid_symm_adjoint
{𝕜 : Type u_4}
{E : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[FiniteDimensional 𝕜 E]
:
LinearMap.adjoint ↑(TensorProduct.lid 𝕜 E).symm = ↑(TensorProduct.lid 𝕜 E)
theorem
TensorProduct.comm_symm_adjoint
{𝕜 : Type u_4}
{E : Type u_5}
{V : Type u_6}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup V]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 V]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 V]
:
LinearMap.adjoint ↑(TensorProduct.comm 𝕜 E V).symm = ↑(TensorProduct.comm 𝕜 E V)