Kronecker product to the tensor product #
This file contains the definition of tensor_toKronecker
and kronecker_to_tensor
, the linear equivalences between ⊗ₜ
and ⊗ₖ
.
noncomputable def
TensorProduct.toKronecker
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
TensorProduct.toKronecker_apply
{R : Type u_2}
{m : Type u_1}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(x : Matrix m m R)
(y : Matrix n n R)
:
noncomputable def
Matrix.kroneckerToTensorProduct
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
TensorProduct.toKronecker_to_tensorProduct
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(x : TensorProduct R (Matrix m m R) (Matrix n n R))
:
theorem
Matrix.kroneckerToTensorProduct_apply
{R : Type u_2}
{m : Type u_1}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(x : Matrix m m R)
(y : Matrix n n R)
:
theorem
Matrix.kroneckerToTensorProduct_toKronecker
{R : Type u_3}
{m : Type u_2}
{n : Type u_1}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(x : Matrix (m × n) (m × n) R)
:
theorem
TensorProduct.toKronecker_star
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[Field R]
[StarRing R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(x : TensorProduct R (Matrix m m R) (Matrix n n R))
:
theorem
Matrix.kronecker_eq_sum_std_basis
{R : Type u_3}
{m : Type u_2}
{n : Type u_1}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(x : Matrix (m × n) (m × n) R)
:
x = ∑ i : m,
∑ j : m,
∑ k : n,
∑ l : n,
x (i, k) (j, l) • kroneckerMap (fun (x1 x2 : R) => x1 * x2) (stdBasisMatrix i j 1) (stdBasisMatrix k l 1)
theorem
TensorProduct.matrix_eq_sum_std_basis
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(x : TensorProduct R (Matrix m m R) (Matrix n n R))
:
x = ∑ i : m,
∑ j : m,
∑ k : n, ∑ l : n, toKronecker x (i, k) (j, l) • Matrix.stdBasisMatrix i j 1 ⊗ₜ[R] Matrix.stdBasisMatrix k l 1
theorem
TensorProduct.toKronecker_hMul
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(x y : TensorProduct R (Matrix m m R) (Matrix n n R))
:
theorem
Matrix.kroneckerToTensorProduct_hMul
{R : Type u_2}
{m : Type u_1}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(x y : Matrix m m R)
(z w : Matrix n n R)
:
kroneckerToTensorProduct
(kroneckerMap (fun (x1 x2 : R) => x1 * x2) x z * kroneckerMap (fun (x1 x2 : R) => x1 * x2) y w) = kroneckerToTensorProduct (kroneckerMap (fun (x1 x2 : R) => x1 * x2) x z) * kroneckerToTensorProduct (kroneckerMap (fun (x1 x2 : R) => x1 * x2) y w)
noncomputable def
tensorToKronecker
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
:
Equations
- tensorToKronecker = { toFun := ⇑TensorProduct.toKronecker, invFun := ⇑Matrix.kroneckerToTensorProduct, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯, map_add' := ⋯, commutes' := ⋯ }
Instances For
@[simp]
theorem
tensorToKronecker_symm_apply
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(a : Matrix (m × n) (m × n) R)
:
@[simp]
theorem
tensorToKronecker_apply
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(a : TensorProduct R (Matrix m m R) (Matrix n n R))
:
noncomputable def
kroneckerToTensor
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
:
Equations
Instances For
@[simp]
theorem
kroneckerToTensor_symm_apply
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(a✝ : TensorProduct R (Matrix m m R) (Matrix n n R))
:
@[simp]
theorem
kroneckerToTensor_apply
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(a✝ : Matrix (m × n) (m × n) R)
:
theorem
Matrix.kroneckerToTensorProduct_star
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[Field R]
[StarRing R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
(x : Matrix (m × n) (m × n) R)
:
theorem
kroneckerToTensor_toLinearMap_eq
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
:
theorem
tensorToKronecker_toLinearMap_eq
{R : Type u_1}
{m : Type u_2}
{n : Type u_3}
[CommSemiring R]
[Fintype m]
[Fintype n]
[DecidableEq m]
[DecidableEq n]
: