Documentation

Monlib.LinearAlgebra.KroneckerToTensor

Kronecker product to the tensor product #

This file contains the definition of tensor_toKronecker and kronecker_to_tensor, the linear equivalences between ⊗ₜ and ⊗ₖ.

noncomputable def TensorProduct.toKronecker {R : Type u_1} {m : Type u_2} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] :
TensorProduct R (Matrix m m R) (Matrix n n R) →ₗ[R] Matrix (m × n) (m × n) R
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem TensorProduct.toKronecker_apply {R : Type u_2} {m : Type u_1} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] (x : Matrix m m R) (y : Matrix n n R) :
    toKronecker (x ⊗ₜ[R] y) = Matrix.kroneckerMap (fun (x1 x2 : R) => x1 * x2) x y
    noncomputable def Matrix.kroneckerToTensorProduct {R : Type u_1} {m : Type u_2} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] :
    Matrix (m × n) (m × n) R →ₗ[R] TensorProduct R (Matrix m m R) (Matrix n n R)
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Matrix.kroneckerToTensorProduct_apply {R : Type u_2} {m : Type u_1} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] (x : Matrix m m R) (y : Matrix n n R) :
      kroneckerToTensorProduct (kroneckerMap (fun (x1 x2 : R) => x1 * x2) x y) = x ⊗ₜ[R] y
      theorem TensorProduct.matrix_star {R : Type u_1} {m : Type u_2} {n : Type u_3} [Field R] [StarRing R] [Fintype m] [Fintype n] (x : Matrix m m R) (y : Matrix n n R) :
      theorem TensorProduct.toKronecker_star {R : Type u_1} {m : Type u_2} {n : Type u_3} [Field R] [StarRing R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] (x : TensorProduct R (Matrix m m R) (Matrix n n R)) :
      theorem Matrix.kronecker_eq_sum_std_basis {R : Type u_3} {m : Type u_2} {n : Type u_1} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] (x : Matrix (m × n) (m × n) R) :
      x = i : m, j : m, k : n, l : n, x (i, k) (j, l) kroneckerMap (fun (x1 x2 : R) => x1 * x2) (stdBasisMatrix i j 1) (stdBasisMatrix k l 1)
      theorem TensorProduct.matrix_eq_sum_std_basis {R : Type u_1} {m : Type u_2} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] (x : TensorProduct R (Matrix m m R) (Matrix n n R)) :
      x = i : m, j : m, k : n, l : n, toKronecker x (i, k) (j, l) Matrix.stdBasisMatrix i j 1 ⊗ₜ[R] Matrix.stdBasisMatrix k l 1
      theorem TensorProduct.toKronecker_hMul {R : Type u_1} {m : Type u_2} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] (x y : TensorProduct R (Matrix m m R) (Matrix n n R)) :
      theorem Matrix.kroneckerToTensorProduct_hMul {R : Type u_2} {m : Type u_1} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] (x y : Matrix m m R) (z w : Matrix n n R) :
      kroneckerToTensorProduct (kroneckerMap (fun (x1 x2 : R) => x1 * x2) x z * kroneckerMap (fun (x1 x2 : R) => x1 * x2) y w) = kroneckerToTensorProduct (kroneckerMap (fun (x1 x2 : R) => x1 * x2) x z) * kroneckerToTensorProduct (kroneckerMap (fun (x1 x2 : R) => x1 * x2) y w)
      noncomputable def tensorToKronecker {R : Type u_1} {m : Type u_2} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] :
      TensorProduct R (Matrix m m R) (Matrix n n R) ≃ₐ[R] Matrix (m × n) (m × n) R
      Equations
      Instances For
        @[simp]
        @[simp]
        theorem tensorToKronecker_apply {R : Type u_1} {m : Type u_2} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] (a : TensorProduct R (Matrix m m R) (Matrix n n R)) :
        noncomputable def kroneckerToTensor {R : Type u_1} {m : Type u_2} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] :
        Matrix (m × n) (m × n) R ≃ₐ[R] TensorProduct R (Matrix m m R) (Matrix n n R)
        Equations
        Instances For
          @[simp]
          theorem kroneckerToTensor_symm_apply {R : Type u_1} {m : Type u_2} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] (a✝ : TensorProduct R (Matrix m m R) (Matrix n n R)) :
          @[simp]
          theorem kroneckerToTensor_apply {R : Type u_1} {m : Type u_2} {n : Type u_3} [CommSemiring R] [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] (a✝ : Matrix (m × n) (m × n) R) :