tensor_finite #
This file defines the star operation on a tensor product of finite-dimensional star-modules $E,F$, i.e., ${(x \otimes y)}^*=x^* \otimes y^*$ for $x\in{E}$ and $x\in{F}$.
noncomputable instance
TensorProduct.Star
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[AddCommGroup F]
[StarAddMonoid E]
[StarAddMonoid F]
[Module ๐ E]
[Module ๐ F]
[FiniteDimensional ๐ E]
[FiniteDimensional ๐ F]
:
Star (TensorProduct ๐ E F)
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
TensorProduct.star_tmul
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[AddCommGroup F]
[StarAddMonoid E]
[StarAddMonoid F]
[Module ๐ E]
[Module ๐ F]
[FiniteDimensional ๐ E]
[FiniteDimensional ๐ F]
[StarModule ๐ E]
[StarModule ๐ F]
(x : E)
(y : F)
:
theorem
TensorProduct.star_add
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[AddCommGroup F]
[StarAddMonoid E]
[StarAddMonoid F]
[Module ๐ E]
[Module ๐ F]
[FiniteDimensional ๐ E]
[FiniteDimensional ๐ F]
(x : TensorProduct ๐ E F)
(y : TensorProduct ๐ E F)
:
def
TensorProduct.star_is_involutive
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[AddCommGroup F]
[StarAddMonoid E]
[StarAddMonoid F]
[Module ๐ E]
[Module ๐ F]
[FiniteDimensional ๐ E]
[FiniteDimensional ๐ F]
[StarModule ๐ E]
[StarModule ๐ F]
:
Function.Involutive star
Equations
- โฏ = โฏ
Instances For
noncomputable instance
TensorProduct.InvolutiveStar
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[AddCommGroup F]
[StarAddMonoid E]
[StarAddMonoid F]
[Module ๐ E]
[Module ๐ F]
[FiniteDimensional ๐ E]
[FiniteDimensional ๐ F]
[StarModule ๐ E]
[StarModule ๐ F]
:
InvolutiveStar (TensorProduct ๐ E F)
Equations
- TensorProduct.InvolutiveStar = InvolutiveStar.mk โฏ
noncomputable instance
TensorProduct.starAddMonoid
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[AddCommGroup F]
[StarAddMonoid E]
[StarAddMonoid F]
[Module ๐ E]
[Module ๐ F]
[FiniteDimensional ๐ E]
[FiniteDimensional ๐ F]
[StarModule ๐ E]
[StarModule ๐ F]
:
StarAddMonoid (TensorProduct ๐ E F)
Equations
- TensorProduct.starAddMonoid = StarAddMonoid.mk โฏ
instance
TensorProduct.starModule
{๐ : Type u_1}
{E : Type u_3}
{F : Type u_2}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[AddCommGroup F]
[StarAddMonoid E]
[StarAddMonoid F]
[Module ๐ E]
[Module ๐ F]
[FiniteDimensional ๐ E]
[FiniteDimensional ๐ F]
:
StarModule ๐ (TensorProduct ๐ E F)
Equations
- โฏ = โฏ
theorem
TensorProduct.map_real
{๐ : Type u_5}
[Field ๐]
[StarRing ๐]
{A : Type u_1}
{B : Type u_2}
{E : Type u_3}
{F : Type u_4}
[AddCommGroup A]
[AddCommGroup B]
[AddCommGroup E]
[AddCommGroup F]
[StarAddMonoid A]
[StarAddMonoid B]
[StarAddMonoid E]
[StarAddMonoid F]
[Module ๐ A]
[Module ๐ B]
[Module ๐ E]
[Module ๐ F]
[StarModule ๐ A]
[StarModule ๐ B]
[StarModule ๐ E]
[StarModule ๐ F]
[FiniteDimensional ๐ A]
[FiniteDimensional ๐ B]
[FiniteDimensional ๐ E]
[FiniteDimensional ๐ F]
(f : E โโ[๐] F)
(g : A โโ[๐] B)
:
(TensorProduct.map f g).real = TensorProduct.map f.real g.real
theorem
LinearMap.mul'_real
{๐ : Type u_2}
[Field ๐]
[StarRing ๐]
(A : Type u_1)
[Ring A]
[Module ๐ A]
[StarRing A]
[StarModule ๐ A]
[SMulCommClass ๐ A A]
[IsScalarTower ๐ A A]
[FiniteDimensional ๐ A]
:
(LinearMap.mul' ๐ A).real = LinearMap.mul' ๐ A โโ โ(TensorProduct.comm ๐ A A)
theorem
TensorProduct.assoc_real
{๐ : Type u_4}
{E : Type u_1}
{F : Type u_2}
{G : Type u_3}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[AddCommGroup F]
[AddCommGroup G]
[StarAddMonoid E]
[StarAddMonoid F]
[StarAddMonoid G]
[Module ๐ E]
[Module ๐ F]
[Module ๐ G]
[StarModule ๐ G]
[FiniteDimensional ๐ E]
[FiniteDimensional ๐ F]
[FiniteDimensional ๐ G]
[StarModule ๐ E]
[StarModule ๐ F]
:
(โ(TensorProduct.assoc ๐ E F G)).real = โ(TensorProduct.assoc ๐ E F G)
theorem
TensorProduct.comm_real
{๐ : Type u_3}
{E : Type u_1}
{F : Type u_2}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[AddCommGroup F]
[StarAddMonoid E]
[StarAddMonoid F]
[Module ๐ E]
[Module ๐ F]
[FiniteDimensional ๐ E]
[FiniteDimensional ๐ F]
[StarModule ๐ E]
[StarModule ๐ F]
:
(โ(TensorProduct.comm ๐ E F)).real = โ(TensorProduct.comm ๐ E F)
theorem
TensorProduct.lid_real
{๐ : Type u_1}
{E : Type u_2}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[StarAddMonoid E]
[Module ๐ E]
[FiniteDimensional ๐ E]
[StarModule ๐ E]
:
(โ(TensorProduct.lid ๐ E)).real = โ(TensorProduct.lid ๐ E)
theorem
TensorProduct.rid_real
{๐ : Type u_1}
{E : Type u_2}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[StarAddMonoid E]
[Module ๐ E]
[FiniteDimensional ๐ E]
[StarModule ๐ E]
:
(โ(TensorProduct.rid ๐ E)).real = โ(TensorProduct.rid ๐ E)
theorem
tensor_op_star_apply
{๐ : Type u_2}
{E : Type u_1}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[StarAddMonoid E]
[Module ๐ E]
[FiniteDimensional ๐ E]
[StarModule ๐ E]
(x : E)
(y : Eแตแตแต)
:
theorem
tenSwap_star
{๐ : Type u_1}
{E : Type u_2}
[Field ๐]
[StarRing ๐]
[AddCommGroup E]
[StarAddMonoid E]
[Module ๐ E]
[FiniteDimensional ๐ E]
[StarModule ๐ E]
(x : TensorProduct ๐ E Eแตแตแต)
:
noncomputable def
starAlgEquivOfLinearEquivTensorProduct
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
[RCLike R]
[Ring A]
[StarAddMonoid A]
[Algebra R A]
[StarModule R A]
[Ring B]
[StarAddMonoid B]
[Algebra R B]
[StarModule R B]
[Semiring C]
[Algebra R C]
[FiniteDimensional R A]
[FiniteDimensional R B]
[StarAddMonoid C]
(f : TensorProduct R A B โโ[R] C)
(h_mul : โ (aโ aโ : A) (bโ bโ : B), f ((aโ * aโ) โโ[R] (bโ * bโ)) = f (aโ โโ[R] bโ) * f (aโ โโ[R] bโ))
(h_one : f (1 โโ[R] 1) = 1)
(h_star : โ (x : A) (y : B), f (star (x โโ[R] y)) = star (f (x โโ[R] y)))
:
TensorProduct R A B โโโ[R] C
Equations
- starAlgEquivOfLinearEquivTensorProduct f h_mul h_one h_star = StarAlgEquiv.ofAlgEquiv (Algebra.TensorProduct.algEquivOfLinearEquivTensorProduct f h_mul h_one) โฏ
Instances For
noncomputable def
StarAlgEquiv.TensorProduct.map
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[RCLike R]
[Ring A]
[Ring B]
[Ring C]
[Ring D]
[Algebra R A]
[Algebra R B]
[Algebra R C]
[Algebra R D]
[StarAddMonoid A]
[StarAddMonoid B]
[StarAddMonoid C]
[StarAddMonoid D]
[StarModule R A]
[StarModule R B]
[StarModule R C]
[StarModule R D]
[Module.Finite R A]
[Module.Finite R B]
[Module.Finite R C]
[Module.Finite R D]
(f : A โโโ[R] B)
(g : C โโโ[R] D)
:
TensorProduct R A C โโโ[R] TensorProduct R B D
Equations
- StarAlgEquiv.TensorProduct.map f g = StarAlgEquiv.ofAlgEquiv (AlgEquiv.TensorProduct.map f.toAlgEquiv g.toAlgEquiv) โฏ
Instances For
theorem
StarAlgEquiv.TensorProduct.map_tmul
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[RCLike R]
[Ring A]
[Ring B]
[Ring C]
[Ring D]
[Algebra R A]
[Algebra R B]
[Algebra R C]
[Algebra R D]
[StarAddMonoid A]
[StarAddMonoid B]
[StarAddMonoid C]
[StarAddMonoid D]
[StarModule R A]
[StarModule R B]
[StarModule R C]
[StarModule R D]
[Module.Finite R A]
[Module.Finite R B]
[Module.Finite R C]
[Module.Finite R D]
(f : A โโโ[R] B)
(g : C โโโ[R] D)
(x : A)
(y : C)
:
theorem
StarAlgEquiv.TensorProduct.map_symm_tmul
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
{D : Type u_5}
[RCLike R]
[Ring A]
[Ring B]
[Ring C]
[Ring D]
[Algebra R A]
[Algebra R B]
[Algebra R C]
[Algebra R D]
[StarAddMonoid A]
[StarAddMonoid B]
[StarAddMonoid C]
[StarAddMonoid D]
[StarModule R A]
[StarModule R B]
[StarModule R C]
[StarModule R D]
[Module.Finite R A]
[Module.Finite R B]
[Module.Finite R C]
[Module.Finite R D]
(f : A โโโ[R] B)
(g : C โโโ[R] D)
(x : B)
(y : D)
:
noncomputable def
StarAlgEquiv.lTensor
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
(C : Type u_4)
[RCLike R]
[Ring A]
[Ring B]
[Ring C]
[Algebra R A]
[Algebra R B]
[Algebra R C]
[StarAddMonoid A]
[StarAddMonoid B]
[StarAddMonoid C]
[StarModule R A]
[StarModule R B]
[StarModule R C]
[Module.Finite R A]
[Module.Finite R B]
[Module.Finite R C]
(f : A โโโ[R] B)
:
TensorProduct R C A โโโ[R] TensorProduct R C B
Equations
- StarAlgEquiv.lTensor C f = starAlgEquivOfLinearEquivTensorProduct (LinearEquiv.lTensor C f.toLinearEquiv) โฏ โฏ โฏ
Instances For
theorem
StarAlgEquiv.lTensor_tmul
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
[RCLike R]
[Ring A]
[Ring B]
[Ring C]
[Algebra R A]
[Algebra R B]
[Algebra R C]
[StarAddMonoid A]
[StarAddMonoid B]
[StarAddMonoid C]
[StarModule R A]
[StarModule R B]
[StarModule R C]
[Module.Finite R A]
[Module.Finite R B]
[Module.Finite R C]
(f : A โโโ[R] B)
(x : C)
(y : A)
:
theorem
StarAlgEquiv.lTensor_symm_tmul
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
{C : Type u_4}
[RCLike R]
[Ring A]
[Ring B]
[Ring C]
[Algebra R A]
[Algebra R B]
[Algebra R C]
[StarAddMonoid A]
[StarAddMonoid B]
[StarAddMonoid C]
[StarModule R A]
[StarModule R B]
[StarModule R C]
[Module.Finite R A]
[Module.Finite R B]
[Module.Finite R C]
(f : A โโโ[R] B)
(x : C)
(y : B)
: