Documentation

Monlib.LinearAlgebra.TensorProduct.Lemmas

theorem Algebra.TensorProduct.map_apply_map_apply {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} {E : Type u_6} {F : Type u_7} [Semiring A] [Semiring B] [Semiring C] [Semiring D] [Semiring E] [Semiring F] [Algebra R A] [Algebra R B] [Algebra R C] [Algebra R D] [Algebra R E] [Algebra R F] (f : A →ₐ[R] B) (g : C →ₐ[R] D) (z : B →ₐ[R] E) (w : D →ₐ[R] F) (x : TensorProduct R A C) :
theorem TensorProduct.map_apply_map_apply {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} {E : Type u_6} {F : Type u_7} [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [AddCommMonoid E] [AddCommMonoid F] [Module R A] [Module R B] [Module R C] [Module R D] [Module R E] [Module R F] (f : A →ₗ[R] B) (g : C →ₗ[R] D) (z : B →ₗ[R] E) (w : D →ₗ[R] F) (x : TensorProduct R A C) :
(TensorProduct.map z w) ((TensorProduct.map f g) x) = (TensorProduct.map (z ∘ₗ f) (w ∘ₗ g)) x
noncomputable def AlgEquiv.TensorProduct.map {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [Semiring A] [Semiring B] [Semiring C] [Semiring D] [Algebra R A] [Algebra R B] [Algebra R C] [Algebra R D] (f : A ≃ₐ[R] B) (g : C ≃ₐ[R] D) :
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem AlgEquiv.TensorProduct.map_tmul {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [Semiring A] [Semiring B] [Semiring C] [Semiring D] [Algebra R A] [Algebra R B] [Algebra R C] [Algebra R D] (f : A ≃ₐ[R] B) (g : C ≃ₐ[R] D) (x : A) (y : C) :
    noncomputable def LinearEquiv.TensorProduct.map {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (f : A ≃ₗ[R] B) (g : C ≃ₗ[R] D) :
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem LinearEquiv.TensorProduct.map_apply {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (f : A ≃ₗ[R] B) (g : C ≃ₗ[R] D) (x : TensorProduct R A C) :
      @[simp]
      theorem LinearEquiv.TensorProduct.map_symm_apply {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (f : A ≃ₗ[R] B) (g : C ≃ₗ[R] D) (x : TensorProduct R B D) :
      (LinearEquiv.TensorProduct.map f g).symm x = (TensorProduct.map f.symm g.symm) x
      @[simp]
      theorem AlgEquiv.TensorProduct.map_toLinearMap {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [Semiring A] [Semiring B] [Semiring C] [Semiring D] [Algebra R A] [Algebra R B] [Algebra R C] [Algebra R D] (f : A ≃ₐ[R] B) (g : C ≃ₐ[R] D) :
      (AlgEquiv.TensorProduct.map f g).toLinearMap = TensorProduct.map f.toLinearMap g.toLinearMap
      theorem AlgEquiv.TensorProduct.map_map_toLinearMap {R : Type u_1} [CommSemiring R] {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} {E : Type u_6} {F : Type u_7} [Semiring A] [Semiring B] [Semiring C] [Semiring D] [Semiring E] [Semiring F] [Algebra R A] [Algebra R B] [Algebra R C] [Algebra R D] [Algebra R E] [Algebra R F] (h : B ≃ₐ[R] E) (i : D ≃ₐ[R] F) (f : A ≃ₐ[R] B) (g : C ≃ₐ[R] D) (x : TensorProduct R A C) :
      theorem AlgEquiv.TensorProduct.map_symm {R : Type u_1} [CommSemiring R] {B : Type u_2} {D : Type u_3} {E : Type u_4} {F : Type u_5} [Semiring B] [Semiring D] [Semiring E] [Semiring F] [Algebra R B] [Algebra R D] [Algebra R E] [Algebra R F] (h : B ≃ₐ[R] E) (i : D ≃ₐ[R] F) :
      theorem AlgEquiv.op_trans {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (f : A ≃ₐ[R] B) (g : B ≃ₐ[R] C) :
      (AlgEquiv.op f).trans (AlgEquiv.op g) = AlgEquiv.op (f.trans g)
      @[simp]
      theorem AlgEquiv.op_one {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Algebra R A] :
      AlgEquiv.op 1 = 1
      @[simp]
      theorem AlgEquiv.TensorProduct.map_one {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] :
      theorem LinearEquiv.TensorProduct.map_tmul {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} {D : Type u_5} [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (f : A ≃ₗ[R] B) (g : C ≃ₗ[R] D) (x : A) (y : C) :
      noncomputable def AlgEquiv.lTensor {R : Type u_1} {A : Type u_2} {B : Type u_3} (C : Type u_4) [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (f : A ≃ₐ[R] B) :
      Equations
      Instances For
        theorem AlgEquiv.lTensor_tmul {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (f : A ≃ₐ[R] B) (x : C) (y : A) :
        (AlgEquiv.lTensor C f) (x ⊗ₜ[R] y) = x ⊗ₜ[R] f y
        theorem AlgEquiv.lTensor_symm_tmul {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommSemiring R] [Semiring A] [Semiring B] [Semiring C] [Algebra R A] [Algebra R B] [Algebra R C] (f : A ≃ₐ[R] B) (x : C) (y : B) :
        (AlgEquiv.lTensor C f).symm (x ⊗ₜ[R] y) = x ⊗ₜ[R] f.symm y