@[defaultInstance 1000]
instance
instRingPiQ
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[hA : (i : ι) → starAlgebra (A i)]
[(i : ι) → QuantumSet (A i)]
:
Equations
- instRingPiQ = Pi.ring
@[defaultInstance 1000]
instance
instAlgebraComplexPiQ
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[hA : (i : ι) → starAlgebra (A i)]
[(i : ι) → QuantumSet (A i)]
:
Equations
- instAlgebraComplexPiQ = Pi.algebra ι A
@[defaultInstance 1000]
instance
instStarRingPiQ
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[hA : (i : ι) → starAlgebra (A i)]
[(i : ι) → QuantumSet (A i)]
:
Equations
- instStarRingPiQ = Pi.instStarRingForall
@[defaultInstance 1000]
instance
instStarModuleComplexPiQ
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[hA : (i : ι) → starAlgebra (A i)]
[(i : ι) → QuantumSet (A i)]
:
StarModule ℂ (PiQ A)
Equations
- ⋯ = ⋯
theorem
PiLp.mul_apply
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[hA : (i : ι) → starAlgebra (A i)]
[(i : ι) → QuantumSet (A i)]
(x : PiQ A)
(y : PiQ A)
(i : ι)
:
theorem
Pi.modAut_apply
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[hA : (i : ι) → starAlgebra (A i)]
[(i : ι) → QuantumSet (A i)]
(r : ℝ)
(x : PiQ A)
(i : ι)
:
def
piStarAlgebra
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[hA : (i : ι) → starAlgebra (A i)]
[(i : ι) → QuantumSet (A i)]
:
starAlgebra (PiQ A)
Equations
- piStarAlgebra = starAlgebra.mk (fun (r : ℝ) => Pi.modAut r) ⋯ ⋯
Instances For
theorem
piStarAlgebra.modAut
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[hA : (i : ι) → starAlgebra (A i)]
[(i : ι) → QuantumSet (A i)]
(r : ℝ)
(x : PiQ A)
(i : ι)
:
noncomputable instance
piInnerProductAlgebra
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[hA : (i : ι) → starAlgebra (A i)]
[(i : ι) → QuantumSet (A i)]
:
Equations
- piInnerProductAlgebra = InnerProductAlgebra.mk ⋯ ⋯ ⋯ ⋯ ⋯
theorem
piInnerProductAlgebra.inner_apply
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[hA : (i : ι) → starAlgebra (A i)]
[(i : ι) → QuantumSet (A i)]
(a : PiQ A)
(b : PiQ A)
:
noncomputable instance
Pi.quantumSet
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[hA : (i : ι) → starAlgebra (A i)]
[hA : (i : ι) → QuantumSet (A i)]
[gns : Fact (∀ (i : ι), k (A i) = 0)]
:
QuantumSet (PiQ A)
Equations
- Pi.quantumSet = QuantumSet.mk ⋯ 0 ⋯ ⋯ ((i : ι) × n (A i)) inferInstance (Classical.typeDecidableEq ((i : ι) × n (A i))) (Pi.orthonormalBasis fun (i : ι) => onb)