noncomputable instance
tensorStarAlgebra
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[Module.Finite ℂ A]
[Module.Finite ℂ B]
:
starAlgebra (TensorProduct ℂ A B)
Equations
- One or more equations did not get rendered due to their size.
theorem
modAut_tensor
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[Module.Finite ℂ A]
[Module.Finite ℂ B]
(r : ℝ)
:
theorem
modAut_tensor_tmul
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[Module.Finite ℂ A]
[Module.Finite ℂ B]
(r : ℝ)
(x : A)
(y : B)
:
noncomputable instance
instInnerProductAlgebraTensorProductComplex
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[InnerProductAlgebra A]
[InnerProductAlgebra B]
[Module.Finite ℂ A]
[Module.Finite ℂ B]
:
Equations
- One or more equations did not get rendered due to their size.
noncomputable instance
QuantumSet.tensorProduct
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
[h : Fact (k A = k B)]
:
QuantumSet (TensorProduct ℂ A B)
Equations
- One or more equations did not get rendered due to their size.
theorem
QuantumSet.tensorProduct.k_eq₁
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
[Fact (k A = k B)]
:
theorem
QuantumSet.tensorProduct.k_eq₂
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
[h : Fact (k A = k B)]
:
noncomputable def
swap_middle_tensor
(R : Type u_3)
[CommSemiring R]
(A : Type u_4)
(B : Type u_5)
(C : Type u_6)
(D : Type u_7)
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
:
TensorProduct R (TensorProduct R A B) (TensorProduct R C D) ≃ₗ[R] TensorProduct R (TensorProduct R A C) (TensorProduct R B D)
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
swap_middle_tensor_tmul_apply
{R : Type u_3}
[CommSemiring R]
{A : Type u_4}
{B : Type u_5}
{C : Type u_6}
{D : Type u_7}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
(x : A)
(y : B)
(z : C)
(w : D)
:
@[simp]
theorem
swap_middle_tensor_symm
{R : Type u_3}
[CommSemiring R]
{A : Type u_4}
{B : Type u_5}
{C : Type u_6}
{D : Type u_7}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
:
theorem
swap_middle_tensor_comp_map
{R : Type u_3}
[CommSemiring R]
{A : Type u_4}
{B : Type u_5}
{C : Type u_6}
{D : Type u_7}
{E : Type u_8}
{F : Type u_9}
{G : Type u_10}
{H : Type u_11}
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
[AddCommMonoid E]
[AddCommMonoid F]
[AddCommMonoid G]
[AddCommMonoid H]
[Module R E]
[Module R F]
[Module R G]
[Module R H]
(f : A →ₗ[R] B)
(g : C →ₗ[R] D)
(h : E →ₗ[R] F)
(k : G →ₗ[R] H)
:
↑(swap_middle_tensor R B D F H) ∘ₗ TensorProduct.map (TensorProduct.map f g) (TensorProduct.map h k) = TensorProduct.map (TensorProduct.map f h) (TensorProduct.map g k) ∘ₗ ↑(swap_middle_tensor R A C E G)
theorem
LinearMap.mul'_tensorProduct
{R : Type u_3}
{A : Type u_4}
{B : Type u_5}
[CommSemiring R]
[NonUnitalNonAssocSemiring A]
[NonUnitalNonAssocSemiring B]
[Module R A]
[Module R B]
[SMulCommClass R A A]
[SMulCommClass R B B]
[IsScalarTower R A A]
[IsScalarTower R B B]
:
mul' R (TensorProduct R A B) = TensorProduct.map (mul' R A) (mul' R B) ∘ₗ ↑(swap_middle_tensor R A B A B)
theorem
swap_middle_tensor_map_conj
{R : Type u_3}
{A : Type u_4}
{B : Type u_5}
{C : Type u_6}
{D : Type u_7}
{E : Type u_8}
{F : Type u_9}
{G : Type u_10}
{H : Type u_11}
[CommSemiring R]
[AddCommMonoid A]
[AddCommMonoid B]
[AddCommMonoid C]
[AddCommMonoid D]
[Module R A]
[Module R B]
[Module R C]
[Module R D]
[AddCommMonoid E]
[AddCommMonoid F]
[AddCommMonoid G]
[AddCommMonoid H]
[Module R E]
[Module R F]
[Module R G]
[Module R H]
(f : A →ₗ[R] B)
(g : C →ₗ[R] D)
(h : E →ₗ[R] F)
(k : G →ₗ[R] H)
:
↑(swap_middle_tensor R B D F H) ∘ₗ TensorProduct.map (TensorProduct.map f g) (TensorProduct.map h k) ∘ₗ ↑(swap_middle_tensor R A C E G).symm = TensorProduct.map (TensorProduct.map f h) (TensorProduct.map g k)
theorem
swap_middle_tensor_adjoint
{𝕜 : Type u_3}
{E : Type u_4}
{F : Type u_5}
{G : Type u_6}
{H : Type u_7}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedAddCommGroup G]
[NormedAddCommGroup H]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[InnerProductSpace 𝕜 G]
[InnerProductSpace 𝕜 H]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
[FiniteDimensional 𝕜 G]
[FiniteDimensional 𝕜 H]
: