noncomputable instance
tensorStarAlgebra
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
{B : Type u_2}
[hb : starAlgebra B]
[hB : QuantumSet B]
:
starAlgebra (TensorProduct ℂ A B)
Equations
- tensorStarAlgebra = starAlgebra.mk (fun (r : ℝ) => AlgEquiv.TensorProduct.map (modAut r) (modAut r)) ⋯ ⋯
theorem
modAut_tensor
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
{B : Type u_2}
[hb : starAlgebra B]
[hB : QuantumSet B]
(r : ℝ)
:
modAut r = AlgEquiv.TensorProduct.map (modAut r) (modAut r)
theorem
modAut_tensor_tmul
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
{B : Type u_2}
[hb : starAlgebra B]
[hB : QuantumSet B]
(r : ℝ)
(x : A)
(y : B)
:
noncomputable instance
instInnerProductAlgebraTensorProductComplex
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
{B : Type u_2}
[hb : starAlgebra B]
[hB : QuantumSet B]
:
Equations
- instInnerProductAlgebraTensorProductComplex = InnerProductAlgebra.mk ⋯ ⋯ ⋯ ⋯ ⋯
noncomputable instance
QuantumSet.tensorProduct
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
{B : Type u_2}
[hb : starAlgebra B]
[hB : QuantumSet B]
[h : Fact (k A = k B)]
:
QuantumSet (TensorProduct ℂ A B)
Equations
- QuantumSet.tensorProduct = QuantumSet.mk ⋯ (k A) ⋯ ⋯ (n A × n B) (instFintypeProd (n A) (n B)) inferInstance (onb.tensorProduct onb)
theorem
QuantumSet.tensorProduct.k_eq₁
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
{B : Type u_2}
[hb : starAlgebra B]
[hB : QuantumSet B]
[Fact (k A = k B)]
:
k (TensorProduct ℂ A B) = k A
theorem
QuantumSet.tensorProduct.k_eq₂
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
{B : Type u_2}
[hb : starAlgebra B]
[hB : QuantumSet B]
[h : Fact (k A = k B)]
:
k (TensorProduct ℂ A B) = k B
theorem
comul_real
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
:
Coalgebra.comul.real = ↑(TensorProduct.comm ℂ A A) ∘ₗ Coalgebra.comul