Documentation

Monlib.LinearAlgebra.QuantumSet.TensorProduct

noncomputable instance tensorStarAlgebra {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] {B : Type u_2} [hb : starAlgebra B] [hB : QuantumSet B] :
Equations
theorem modAut_tensor {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] {B : Type u_2} [hb : starAlgebra B] [hB : QuantumSet B] (r : ) :
theorem modAut_tensor_tmul {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] {B : Type u_2} [hb : starAlgebra B] [hB : QuantumSet B] (r : ) (x : A) (y : B) :
noncomputable instance instInnerProductAlgebraTensorProductComplex {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] {B : Type u_2} [hb : starAlgebra B] [hB : QuantumSet B] :
Equations
noncomputable instance QuantumSet.tensorProduct {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] {B : Type u_2} [hb : starAlgebra B] [hB : QuantumSet B] [h : Fact (k A = k B)] :
Equations
theorem QuantumSet.tensorProduct.k_eq₁ {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] {B : Type u_2} [hb : starAlgebra B] [hB : QuantumSet B] [Fact (k A = k B)] :
theorem QuantumSet.tensorProduct.k_eq₂ {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] {B : Type u_2} [hb : starAlgebra B] [hB : QuantumSet B] [h : Fact (k A = k B)] :
theorem comul_real {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] :
Coalgebra.comul.real = (TensorProduct.comm A A) ∘ₗ Coalgebra.comul