Documentation

Monlib.LinearAlgebra.Ips.Functional

Linear functionals #

This file contains results for linear functionals on the set of $n \times n$ matrices $M_n$ over $\mathbb{C}$.

Main results #

theorem includeBlock_apply_mul {R : Type u_1} {k : Type u_2} {s : kType u_3} [CommSemiring R] [DecidableEq k] [(i : k) → Fintype (s i)] {i j : k} (x : Matrix (s i) (s i) R) (y : Matrix (s j) (s j) R) (p q : s j) :
(Matrix.includeBlock x j * y) p q = if i = j then (Matrix.includeBlock x j * y) p q else 0
theorem includeBlock_mul_apply {R : Type u_1} {k : Type u_2} {s : kType u_3} [CommSemiring R] [DecidableEq k] [(i : k) → Fintype (s i)] {i j : k} (x : Matrix (s j) (s j) R) (y : Matrix (s i) (s i) R) (p q : s j) :
(x * Matrix.includeBlock y j) p q = if i = j then (x * Matrix.includeBlock y j) p q else 0
def Module.Dual.matrix {n : Type u_1} [Fintype n] [DecidableEq n] {R : Type u_2} [CommSemiring R] (φ : Dual R (Matrix n n R)) :
Matrix n n R

the matrix of a linear map φ : M_n →ₗ[R] R is given by ∑ i j, stdBasisMatrix j i (φ (stdBasisMatrix i j 1)).

Equations
Instances For
    theorem Module.Dual.apply {n : Type u_2} [Fintype n] [DecidableEq n] {R : Type u_1} [CommSemiring R] (φ : Dual R (Matrix n n R)) (a : Matrix n n R) :
    φ a = (φ.matrix * a).trace

    given any linear functional φ : M_n →ₗ[R] R, we get φ a = (φ.matrix ⬝ a).trace.

    def Module.Dual.pi {R : Type u_1} [CommSemiring R] {k : Type u_2} [Fintype k] {s : kType u_3} (φ : (i : k) → Dual R (Matrix (s i) (s i) R)) :
    Dual R (PiMat R k s)

    we linear maps φ_i : M_[n_i] →ₗ[R] R, we define its direct sum as the linear map (Π i, M_[n_i]) →ₗ[R] R.

    Equations
    • Module.Dual.pi φ = { toFun := fun (a : PiMat R k s) => i : k, (φ i) (a i), map_add' := , map_smul' := }
    Instances For
      @[simp]
      theorem Module.Dual.pi_apply {R : Type u_1} [CommSemiring R] {k : Type u_2} [Fintype k] {s : kType u_3} (φ : (i : k) → Dual R (Matrix (s i) (s i) R)) (a : PiMat R k s) :
      (pi φ) a = i : k, (φ i) (a i)
      def Module.Dual.pi_of {R : Type u_1} [CommSemiring R] {k : Type u_2} [Fintype k] [DecidableEq k] {s : kType u_3} (φ : Dual R (PiMat R k s)) (i : k) :
      Dual R (Matrix (s i) (s i) R)
      Equations
      Instances For
        @[simp]
        theorem Module.Dual.pi_of_apply {R : Type u_1} [CommSemiring R] {k : Type u_2} [Fintype k] [DecidableEq k] {s : kType u_3} (φ : Dual R (PiMat R k s)) (i : k) (a✝ : Matrix (s i) (s i) R) :
        (φ.pi_of i) a✝ = φ (Matrix.includeBlock a✝)
        theorem Module.Dual.pi.apply {R : Type u_3} [CommSemiring R] {k : Type u_1} [Fintype k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] (φ : (i : k) → Dual R (Matrix (s i) (s i) R)) (x : PiMat R k s) :
        (pi φ) x = i : k, ((φ i).matrix * x i).trace

        for direct sums, we get φ x = ∑ i, ((φ i).matrix ⬝ x i).trace

        theorem Module.Dual.eq_pi_of_pi {R : Type u_3} [CommSemiring R] {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] (φ : (i : k) → Dual R (Matrix (s i) (s i) R)) :
        φ = (pi φ).pi_of
        theorem Module.Dual.eq_pi_pi_of {R : Type u_3} [CommSemiring R] {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] (φ : Dual R (PiMat R k s)) :
        φ = pi φ.pi_of
        theorem Module.Dual.pi.apply' {R : Type u_3} [CommSemiring R] {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] (φ : (i : k) → Dual R (Matrix (s i) (s i) R)) (x : PiMat R k s) :
        theorem Module.Dual.pi_apply'' {R : Type u_3} [CommSemiring R] {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] (φ : Dual R (PiMat R k s)) (x : PiMat R k s) :
        φ x = i : k, ((φ.pi_of i).matrix * x i).trace
        theorem Module.Dual.apply_eq_of {n : Type u_2} [Fintype n] [DecidableEq n] {R : Type u_1} [CommSemiring R] (φ : Dual R (Matrix n n R)) (x : Matrix n n R) (h : ∀ (a : Matrix n n R), φ a = (x * a).trace) :
        x = φ.matrix
        theorem Module.Dual.eq_trace_unique {n : Type u_2} [Fintype n] [DecidableEq n] {R : Type u_1} [CommSemiring R] (φ : Dual R (Matrix n n R)) :
        ∃! Q : Matrix n n R, ∀ (a : Matrix n n R), φ a = (Q * a).trace

        Any linear functional $f$ on $M_n$ is given by a unique matrix $Q \in M_n$ such that $f(x)=\operatorname{Tr}(Qx)$ for any $x \in M_n$.

        def Module.Dual.pi' {R : Type u_1} [CommSemiring R] {k : Type u_2} [Fintype k] [DecidableEq k] {s : kType u_3} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] (φ : (i : k) → Dual R (Matrix (s i) (s i) R)) :
        Equations
        Instances For
          theorem Module.Dual.pi.apply_single_block {R : Type u_3} [CommSemiring R] {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] (φ : (i : k) → Matrix (s i) (s i) R →ₗ[R] R) (x : (i : k) → Matrix (s i) (s i) R) (i : k) :
          (pi φ) (Matrix.includeBlock (x i)) = (φ i) (x i)

          ⨁_i φ_i ι_i (x_i) = φ_i (x_i)

          theorem Module.Dual.pi.apply_single_block' {R : Type u_3} [CommSemiring R] {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] (φ : (i : k) → Matrix (s i) (s i) R →ₗ[R] R) {i : k} (x : Matrix (s i) (s i) R) :
          (pi φ) (Matrix.includeBlock x) = (φ i) x
          def Module.Dual.IsPosMap {𝕜 : Type u_1} [RCLike 𝕜] {A : Type u_2} [NonUnitalSemiring A] [StarRing A] [Module 𝕜 A] (φ : Dual 𝕜 A) :

          A linear functional $φ$ on $M_n$ is positive if $0 ≤ φ (x^*x)$ for all $x \in M_n$.

          Equations
          Instances For
            theorem Matrix.nonneg_iff {k : Type u_1} [Fintype k] [DecidableEq k] {x : Matrix k k } :
            0 x ∃ (y : Matrix k k ), x = star y * y
            theorem PiMat.nonneg_iff {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] {x : PiMat k s} :
            0 x ∃ (y : PiMat k s), x = star y * y
            theorem dual_isPosMap_of_linearMap_isPosMap {𝕜 : Type u_2} [RCLike 𝕜] {A : Type u_1} [NonUnitalSemiring A] [StarRing A] [Module 𝕜 A] [PartialOrder A] [StarOrderedRing A] {φ : Module.Dual 𝕜 A} (h : LinearMap.IsPosMap φ) :
            theorem Module.Dual.piIsPosMap_iff {𝕜 : Type u_3} [RCLike 𝕜] {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] (φ : Dual 𝕜 (PiMat 𝕜 k s)) :
            φ.IsPosMap ∀ (i : k), (φ.pi_of i).IsPosMap
            theorem Module.Dual.pi_isPosMap_iff {𝕜 : Type u_3} [RCLike 𝕜] {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] (φ : (i : k) → Dual 𝕜 (Matrix (s i) (s i) 𝕜)) :
            (pi φ).IsPosMap ∀ (i : k), (φ i).IsPosMap
            def Module.Dual.IsUnital {R : Type u_1} [CommSemiring R] {A : Type u_2} [AddCommMonoid A] [Module R A] [One A] (φ : Dual R A) :

            A linear functional $φ$ on $M_n$ is unital if $φ(1) = 1$.

            Equations
            Instances For
              class Module.Dual.IsState {𝕜 : Type u_1} [RCLike 𝕜] {A : Type u_2} [Semiring A] [StarRing A] [Module 𝕜 A] (φ : Dual 𝕜 A) :

              A linear functional is called a state if it is positive and unital

              Instances
                theorem Module.Dual.IsState_iff {𝕜 : Type u_2} [RCLike 𝕜] {A : Type u_1} [Semiring A] [StarRing A] [Module 𝕜 A] (φ : Dual 𝕜 A) :
                theorem Module.Dual.isPosMap_of_matrix {n : Type u_2} [Fintype n] [DecidableEq n] {𝕜 : Type u_1} [RCLike 𝕜] (φ : Dual 𝕜 (Matrix n n 𝕜)) :
                φ.IsPosMap ∀ (a : Matrix n n 𝕜), a.PosSemidef0 φ a
                def Module.Dual.IsFaithful {𝕜 : Type u_1} [RCLike 𝕜] {A : Type u_2} [NonUnitalSemiring A] [StarRing A] [Module 𝕜 A] (φ : Dual 𝕜 A) :

                A linear functional $f$ on $M_n$ is said to be faithful if $f(x^*x)=0$ if and only if $x=0$ for any $x \in M_n$.

                Equations
                Instances For
                  theorem Matrix.includeBlock_eq_zero {R : Type u_3} [CommSemiring R] {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] {i : k} {x : Matrix (s i) (s i) R} :
                  theorem Module.Dual.piIsFaithful_iff {𝕜 : Type u_3} [RCLike 𝕜] {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] {φ : Dual 𝕜 (PiMat 𝕜 k s)} ( : φ.IsPosMap) :
                  φ.IsFaithful ∀ (i : k), (φ.pi_of i).IsFaithful
                  theorem Module.Dual.isFaithful_of_matrix {n : Type u_2} [Fintype n] [DecidableEq n] {𝕜 : Type u_1} [RCLike 𝕜] (φ : Dual 𝕜 (Matrix n n 𝕜)) :
                  φ.IsFaithful ∀ (a : Matrix n n 𝕜), a.PosSemidef → (φ a = 0 a = 0)

                  A linear functional $f$ is positive if and only if there exists a unique positive semi-definite matrix $Q\in M_n$ such $f(x)=\operatorname{Tr}(Qx)$ for all $x\in M_n$.

                  A linear functional $f$ is a state if and only if there exists a unique positive semi-definite matrix $Q\in M_n$ such that its trace equals $1$ and $f(x)=\operatorname{Tr}(Qx)$ for all $x\in M_n$.

                  A positive linear functional $f$ is faithful if and only if there exists a positive definite matrix such that $f(x)=\operatorname{Tr}(Qx)$ for all $x\in M_n$.

                  class Module.Dual.IsFaithfulPosMap {𝕜 : Type u_1} [RCLike 𝕜] {A : Type u_2} [NonUnitalSemiring A] [StarRing A] [Module 𝕜 A] (φ : Dual 𝕜 A) :
                  Instances
                    theorem Module.Dual.IsFaithfulPosMap_iff {𝕜 : Type u_2} [RCLike 𝕜] {A : Type u_1} [NonUnitalSemiring A] [StarRing A] [Module 𝕜 A] (φ : Dual 𝕜 A) :

                    A linear functional $φ$ is a faithful and positive if and only if there exists a unique positive definite matrix $Q$ such that $φ(x)=\operatorname{Tr}(Qx)$ for all $x\in M_n$.

                    A state is faithful $f$ if and only if there exists a unique positive definite matrix $Q\in M_n$ with trace equal to $1$ and $f(x)=\operatorname{Tr}(Qx)$ for all $x \in M_n$.

                    def Module.Dual.IsTracial {𝕜 : Type u_1} [RCLike 𝕜] {A : Type u_2} [NonUnitalSemiring A] [Module 𝕜 A] (φ : Dual 𝕜 A) :

                    A linear functional $f$ is tracial if and only if $f(xy)=f(yx)$ for all $x,y$.

                    Equations
                    Instances For
                      theorem Module.Dual.isTracial_pos_map_iff_of_matrix {n : Type u_1} [Fintype n] [DecidableEq n] (φ : Dual (Matrix n n )) :
                      φ.IsPosMap φ.IsTracial ∃ (α : NNReal), φ.matrix = α 1

                      A linear functional is tracial and positive if and only if there exists a non-negative real $α$ such that $f\colon x \mapsto \alpha \operatorname{Tr}(x)$.

                      A linear functional is tracial and positive if and only if there exists a unique non-negative real $α$ such that $f\colon x \mapsto \alpha \operatorname{Tr}(x)$.

                      A linear functional $f$ is tracial positive and faithful if and only if there exists a positive real number $\alpha$ such that $f\colon x\mapsto \alpha \operatorname{Tr}(x)$.

                      theorem Matrix.ext_iff_trace' {R : Type u_1} {m : Type u_2} {n : Type u_3} [Semiring R] [StarRing R] [Fintype n] [Fintype m] [DecidableEq n] [DecidableEq m] (A B : Matrix m n R) :
                      (∀ (x : Matrix m n R), (x.conjTranspose * A).trace = (x.conjTranspose * B).trace) A = B
                      theorem Module.Dual.pi.IsPosMap.isReal {k : Type u_1} [Fintype k] [DecidableEq k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] {ψ : (i : k) → Dual (Matrix (s i) (s i) )} ( : ∀ (i : k), (ψ i).IsPosMap) :
                      def IsInner {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_2} [AddCommMonoid H] [Module 𝕜 H] (φ : H × H𝕜) :

                      A function $H \times H \to 𝕜$ defines an inner product if it satisfies the following.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        A linear functional $f$ on $M_n$ is positive and faithful if and only if $(x,y)\mapsto f(x^*y)$ defines an inner product on $M_n$.

                        @[reducible]
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[reducible]
                          noncomputable def Module.Dual.PiNormedAddCommGroup {k : Type u_1} [Fintype k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] {φ : (i : k) → Dual (Matrix (s i) (s i) )} [_hφ : ∀ (i : k), (φ i).IsFaithfulPosMap] :
                          Equations
                          Instances For
                            @[reducible]
                            noncomputable def Module.Dual.pi.InnerProductSpace {k : Type u_1} [Fintype k] {s : kType u_2} [(i : k) → Fintype (s i)] [(i : k) → DecidableEq (s i)] {φ : (i : k) → Dual (Matrix (s i) (s i) )} [ : ∀ (i : k), (φ i).IsFaithfulPosMap] :
                            Equations
                            Instances For