Documentation

Monlib.LinearAlgebra.Matrix.PosEqLinearMapIsPositive

the correspondence between matrix.pos_semidef and linear_map.is_positive #

In this file, we show that x โˆˆ Mโ‚™ being positive semi-definite is equivalent to x.to_euclidean_lin.is_positive

theorem Matrix.conjTranspose_eq_adjoint {๐•œ : Type u_3} {m : Type u_1} {n : Type u_2} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] [RCLike ๐•œ] (A : Matrix m n ๐•œ) :

The adjoint of the linear map associated to a matrix is the linear map associated to the conjugate transpose of that matrix.

theorem Matrix.posSemidef_star_mul_self {m : Type u_1} {n : Type u_2} {R : Type u_3} [Fintype m] [Fintype n] [CommRing R] [PartialOrder R] [StarRing R] [StarOrderedRing R] (A : Matrix m n R) :

Alias of Matrix.posSemidef_conjTranspose_mul_self.


The conjugate transpose of a matrix multiplied by the matrix is positive semidefinite

theorem Matrix.posSemidef_mul_star_self {m : Type u_1} {n : Type u_2} {R : Type u_3} [Fintype m] [Fintype n] [CommRing R] [PartialOrder R] [StarRing R] [StarOrderedRing R] (A : Matrix m n R) :

Alias of Matrix.posSemidef_self_mul_conjTranspose.


A matrix multiplied by its conjugate transpose is positive semidefinite

theorem Matrix.toEuclideanLin_eq_piLp_linearEquiv {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] (x : Matrix n n ๐•œ) :
theorem Matrix.of_isHermitian' {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {x : Matrix n n ๐•œ} (hx : x.IsHermitian) (x_1 : n โ†’ ๐•œ) :
โ†‘(RCLike.re (โˆ‘ i : n, star x_1 i * โˆ‘ x_2 : n, x i x_2 * x_1 x_2)) = โˆ‘ x_2 : n, star x_1 x_2 * โˆ‘ x_3 : n, x x_2 x_3 * x_1 x_3
theorem Matrix.posSemidef_eq_linearMap_positive {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] (x : Matrix n n ๐•œ) :
theorem Matrix.posSemidef_iff {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] (x : Matrix n n ๐•œ) :
x.PosSemidef โ†” โˆƒ (y : Matrix n n ๐•œ), x = y.conjTranspose * y
theorem Matrix.dotProduct_eq_inner {๐•œ : Type u_2} [RCLike ๐•œ] {n : Type u_1} [Fintype n] (x y : n โ†’ ๐•œ) :
star x โฌแตฅ y = โˆ‘ i : n, inner (x i) (y i)
theorem Matrix.PosSemidef.invertible_iff_posDef {๐•œ : Type u_2} [RCLike ๐•œ] {n : Type u_1} [Fintype n] [DecidableEq n] {x : Matrix n n ๐•œ} (hx : x.PosSemidef) :
theorem Matrix.isHermitian_self_hMul_conjTranspose {๐•œ : Type u_3} [RCLike ๐•œ] {m : Type u_1} {n : Type u_2} [Fintype m] (A : Matrix m n ๐•œ) :
theorem Matrix.trace_star {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] {A : Matrix n n ๐•œ} :
theorem Matrix.nonneg_eigenvalues_of_posSemidef {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {ฮผ : โ„} {A : Matrix n n ๐•œ} (hฮผ : Module.End.HasEigenvalue (toEuclideanLin A) โ†‘ฮผ) (H : A.PosSemidef) :
0 โ‰ค ฮผ
theorem Matrix.IsHermitian.nonneg_eigenvalues_of_posSemidef {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {A : Matrix n n ๐•œ} (hA : A.PosSemidef) (i : n) :
0 โ‰ค โ‹ฏ.eigenvalues i
noncomputable def Matrix.invertible_of_bij_toLin' {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {Q : Matrix n n ๐•œ} (h : Function.Bijective โ‡‘(toLin' Q)) :
Equations
Instances For
    theorem Matrix.bij_toLin'_of_invertible {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {Q : Matrix n n ๐•œ} (h : Invertible Q) :
    noncomputable instance Matrix.PosDef.invertible {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {Q : Matrix n n ๐•œ} (hQ : Q.PosDef) :
    Equations
    theorem Matrix.mulVec_sum {n : Type u_1} {m : Type u_2} {k : Type u_3} {R : Type u_4} [NonUnitalNonAssocSemiring R] [Fintype n] [Fintype m] [Fintype k] (x : Matrix m n R) (y : k โ†’ n โ†’ R) :
    x.mulVec (โˆ‘ i : k, y i) = โˆ‘ i : k, x.mulVec (y i)
    theorem Matrix.vecMul_sum {n : Type u_1} {m : Type u_2} {k : Type u_3} {R : Type u_4} [NonUnitalNonAssocSemiring R] [Fintype m] [Fintype n] [Fintype k] (x : Matrix n m R) (y : k โ†’ n โ†’ R) :
    vecMul (โˆ‘ i : k, y i) x = โˆ‘ i : k, vecMul (y i) x
    theorem Matrix.toLin_piLp_eq_toLin' {๐•œ : Type u_2} [RCLike ๐•œ] {n : Type u_1} [Fintype n] [DecidableEq n] :
    toLin (PiLp.basisFun 2 ๐•œ n) (PiLp.basisFun 2 ๐•œ n) = toLin'
    theorem Matrix.posSemidef_iff_eq_rankOne {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {x : Matrix n n ๐•œ} :
    x.PosSemidef โ†” โˆƒ (m : โ„•) (v : Fin m โ†’ EuclideanSpace ๐•œ n), x = โˆ‘ i : Fin m, LinearMap.toMatrix' โ†‘(((rankOne ๐•œ) (v i)) (v i))
    theorem Matrix.posSemidef_iff_eq_rankOne' {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {x : Matrix n n ๐•œ} :
    x.PosSemidef โ†” โˆƒ (m : โ„•) (v : Fin m โ†’ n โ†’ ๐•œ), x = โˆ‘ i : Fin m, LinearMap.toMatrix' โ†‘(((rankOne ๐•œ) ((EuclideanSpace.equiv n ๐•œ).symm (v i))) ((EuclideanSpace.equiv n ๐•œ).symm (v i)))
    theorem Matrix.posSemidef_iff_eq_rankOne'' {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {x : Matrix n n ๐•œ} :
    x.PosSemidef โ†” โˆƒ (m : Type) (_hm : Fintype m) (v : m โ†’ n โ†’ ๐•œ), x = โˆ‘ i : m, LinearMap.toMatrix' โ†‘(((rankOne ๐•œ) ((EuclideanSpace.equiv n ๐•œ).symm (v i))) ((EuclideanSpace.equiv n ๐•œ).symm (v i)))
    theorem rankOne.EuclideanSpace.toEuclideanLin_symm {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} {m : Type u_3} [Fintype n] [Fintype m] [DecidableEq n] [DecidableEq m] (x : EuclideanSpace ๐•œ n) (y : EuclideanSpace ๐•œ m) :
    Matrix.toEuclideanLin.symm โ†‘(((rankOne ๐•œ) x) y) = Matrix.col (Fin 1) x * (Matrix.col (Fin 1) y).conjTranspose
    theorem rankOne.EuclideanSpace.toMatrix' {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} {m : Type u_3} [Fintype n] [Fintype m] [DecidableEq n] [DecidableEq m] (x : EuclideanSpace ๐•œ n) (y : EuclideanSpace ๐•œ m) :
    LinearMap.toMatrix' โ†‘(((rankOne ๐•œ) x) y) = Matrix.col (Fin 1) x * (Matrix.col (Fin 1) y).conjTranspose
    theorem rankOne.Pi.toMatrix'' {๐•œ : Type u_1} [RCLike ๐•œ] {n : Type u_2} [Fintype n] [DecidableEq n] (x y : n โ†’ ๐•œ) :
    LinearMap.toMatrix' โ†‘(((rankOne ๐•œ) ((EuclideanSpace.equiv n ๐•œ).symm x)) ((EuclideanSpace.equiv n ๐•œ).symm y)) = Matrix.col (Fin 1) x * (Matrix.col (Fin 1) y).conjTranspose
    theorem Matrix.posSemidef_iff_col_mul_conjTranspose_col {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {x : Matrix n n ๐•œ} :
    x.PosSemidef โ†” โˆƒ (m : โ„•) (v : Fin m โ†’ EuclideanSpace ๐•œ n), x = โˆ‘ i : Fin m, col (Fin 1) (v i) * (col (Fin 1) (v i)).conjTranspose

    a matrix $x$ is positive semi-definite if and only if there exists vectors $(v_i)$ such that $\sum_i v_iv_i^*=x$

    theorem Matrix.posSemidef_iff_col_mul_conjTranspose_col' {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {x : Matrix n n ๐•œ} :
    x.PosSemidef โ†” โˆƒ (m : Type) (_hm : Fintype m) (v : m โ†’ EuclideanSpace ๐•œ n), x = โˆ‘ i : m, col (Fin 1) (v i) * (col (Fin 1) (v i)).conjTranspose
    theorem Matrix.posSemidef_iff_vecMulVec {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {x : Matrix n n ๐•œ} :
    x.PosSemidef โ†” โˆƒ (m : โ„•) (v : Fin m โ†’ EuclideanSpace ๐•œ n), x = โˆ‘ i : Fin m, vecMulVec (v i) (star (v i))
    theorem Matrix.posSemidef_iff_vecMulVec' {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] {x : Matrix n n ๐•œ} :
    x.PosSemidef โ†” โˆƒ (m : Type) (_hm : Fintype m) (v : m โ†’ EuclideanSpace ๐•œ n), x = โˆ‘ i : m, vecMulVec (v i) (star (v i))
    theorem vecMulVec_posSemidef {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] (x : n โ†’ ๐•œ) :
    theorem Matrix.posDefOne {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] :

    the identity is a positive definite matrix

    theorem Matrix.PosDef.pos_eigenvalues {n : Type u_2} {๐•œ : Type u_4} [Fintype n] [RCLike ๐•œ] [DecidableEq n] {A : Matrix n n ๐•œ} (hA : A.PosDef) (i : n) :
    0 < โ‹ฏ.eigenvalues i

    Alias of Matrix.PosDef.eigenvalues_pos.


    The eigenvalues of a positive definite matrix are positive

    theorem Matrix.PosDef.pos_trace {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] [Nonempty n] {x : Matrix n n ๐•œ} (hx : x.PosDef) :
    theorem Matrix.PosDef.trace_ne_zero {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] [Nonempty n] {x : Matrix n n ๐•œ} (hx : x.PosDef) :

    the trace of a positive definite matrix is non-zero

    theorem Matrix.toEuclideanLin_apply' {๐•œ : Type u_2} [RCLike ๐•œ] {n : Type u_1} [Fintype n] [DecidableEq n] (x : Matrix n n ๐•œ) (v : EuclideanSpace ๐•œ n) :
    theorem PosSemidef.complex {n : Type u_1} [Fintype n] [DecidableEq n] (x : Matrix n n โ„‚) :
    x.PosSemidef โ†” โˆ€ (y : n โ†’ โ„‚), 0 โ‰ค star y โฌแตฅ x.mulVec y
    theorem StdBasisMatrix.sum_eq_one {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] (a : ๐•œ) :
    โˆ‘ k : n, Matrix.stdBasisMatrix k k a = a โ€ข 1
    theorem stdBasisMatrix_hMul {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] (i j k l : n) (a b : ๐•œ) :
    theorem Matrix.smul_stdBasisMatrix' {n : Type u_1} {R : Type u_2} [CommSemiring R] [DecidableEq n] (i j : n) (c : R) :
    theorem Matrix.trace_iff' {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] (x : Matrix n n ๐•œ) :
    x.trace = โˆ‘ i : n, x i i
    theorem existsUnique_trace {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] [Nontrivial n] :
    โˆƒ! ฯ† : Matrix n n ๐•œ โ†’โ‚—[๐•œ] ๐•œ, (โˆ€ (a b : Matrix n n ๐•œ), ฯ† (a * b) = ฯ† (b * a)) โˆง ฯ† 1 = 1
    theorem Matrix.stdBasisMatrix.trace {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] (i j : n) (a : ๐•œ) :
    (stdBasisMatrix i j a).trace = if i = j then a else 0
    theorem Matrix.stdBasisMatrix_eq {R : Type u_1} {n : Type u_2} {m : Type u_3} [Semiring R] [DecidableEq n] [DecidableEq m] (i : n) (j : m) (a : R) :
    stdBasisMatrix i j a = fun (i' : n) (j' : m) => if i = i' โˆง j = j' then a else 0
    theorem vecMulVec_eq_zero_iff {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] (x : n โ†’ ๐•œ) :
    theorem Matrix.PosDef.diagonal_iff {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] (x : n โ†’ ๐•œ) :
    (diagonal x).PosDef โ†” โˆ€ (i : n), 0 < x i
    theorem norm_ite {ฮฑ : Type u_1} [Norm ฮฑ] (P : Prop) [Decidable P] (a b : ฮฑ) :
    theorem Matrix.PosSemidef.diagonal_iff {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] (x : n โ†’ ๐•œ) :
    (diagonal x).PosSemidef โ†” โˆ€ (i : n), 0 โ‰ค x i
    theorem Matrix.trace_conjTranspose_hMul_self_nonneg {n : Type u_2} {๐•œ : Type u_3} [RCLike ๐•œ] {m : Type u_1} [Fintype m] [Fintype n] (x : Matrix m n ๐•œ) :
    theorem Matrix.PosSemidef.trace_conjTranspose_hMul_self_nonneg {n : Type u_2} {๐•œ : Type u_3} [RCLike ๐•œ] {m : Type u_1} [Fintype m] [Fintype n] [DecidableEq m] {Q : Matrix m m ๐•œ} (hQ : Q.PosSemidef) (x : Matrix n m ๐•œ) :

    given a positive definite matrix $Q$, we have $0\leq\operatorname{Tr}(Qx^*x)$ for any matrix $x$

    @[simp]
    theorem Matrix.Finset.sum_abs_eq_zero_iff' {๐•œ : Type u_2} [RCLike ๐•œ] {s : Type u_1} [Fintype s] {x : s โ†’ ๐•œ} :
    โˆ‘ i : s, โ€–x iโ€– ^ 2 = 0 โ†” โˆ€ (i : s), โ€–x iโ€– ^ 2 = 0
    theorem Matrix.trace_conjTranspose_hMul_self_eq_zero {n : Type u_2} {๐•œ : Type u_3} [RCLike ๐•œ] {m : Type u_1} [Fintype n] [Fintype m] (x : Matrix n m ๐•œ) :
    theorem Matrix.PosDef.trace_conjTranspose_hMul_self_eq_zero {n : Type u_2} {๐•œ : Type u_3} [RCLike ๐•œ] {m : Type u_1} [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] {Q : Matrix m m ๐•œ} (hQ : Q.PosDef) {x : Matrix n m ๐•œ} :
    (Q * x.conjTranspose * x).trace = 0 โ†” x = 0

    given a positive definite matrix $Q$, we get $\textnormal{Tr}(Qx^*x)=0$ if and only if $x=0$ for any matrix $x$

    theorem Matrix.Nontracial.trace_conjTranspose_hMul_self_eq_zero {n : Type u_2} {๐•œ : Type u_3} [RCLike ๐•œ] {m : Type u_1} [Fintype m] [Fintype n] [DecidableEq m] [DecidableEq n] {Q : Matrix m m ๐•œ} (hQ : Q.PosDef) {x : Matrix n m ๐•œ} :
    (Q * x.conjTranspose * x).trace = 0 โ†” x = 0

    Alias of Matrix.PosDef.trace_conjTranspose_hMul_self_eq_zero.


    given a positive definite matrix $Q$, we get $\textnormal{Tr}(Qx^*x)=0$ if and only if $x=0$ for any matrix $x$

    theorem Matrix.IsHermitian.trace_conj_symm_star_hMul {n : Type u_2} {๐•œ : Type u_3} [RCLike ๐•œ] {m : Type u_1} [Fintype m] [Fintype n] {Q : Matrix m m ๐•œ} (hQ : Q.IsHermitian) (x y : Matrix n m ๐•œ) :
    (starRingEnd ๐•œ) (Q * y.conjTranspose * x).trace = (Q * x.conjTranspose * y).trace
    theorem Matrix.conjTranspose_hMul_self_eq_zero {n : Type u_2} {๐•œ : Type u_3} [RCLike ๐•œ] {m : Type u_1} [Fintype m] [Fintype n] (x : Matrix n m ๐•œ) :
    theorem Matrix.PosSemidef.smul {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] {x : Matrix n n ๐•œ} (hx : x.PosSemidef) (ฮฑ : NNReal) :
    (โ†‘โ†‘ฮฑ โ€ข x).PosSemidef
    theorem Matrix.PosSemidef.colMulConjTransposeCol {n : Type u_1} {๐•œ : Type u_2} [RCLike ๐•œ] [Fintype n] [DecidableEq n] (x : n โ†’ ๐•œ) :
    theorem Matrix.PosSemidef.mulConjTransposeSelf {m : Type u_1} {n : Type u_2} {R : Type u_3} [Fintype m] [Fintype n] [CommRing R] [PartialOrder R] [StarRing R] [StarOrderedRing R] (A : Matrix m n R) :

    Alias of Matrix.posSemidef_self_mul_conjTranspose.


    A matrix multiplied by its conjugate transpose is positive semidefinite