Documentation

Monlib.LinearAlgebra.Ips.Ips

Finite-dimensional inner product spaces #

In this file, we prove some results in finite-dimensional inner product spaces.

Notation #

This file uses the local notation P _ for orthogonal_projection _ and ↥P _ for the extended orthogonal projection orthogonal_projection' _.

We let $V$ be an inner product space over $\mathbb{k}$.

theorem Submodule.invariantUnder_iff_ortho_adjoint_invariant {V : Type u_2} {𝕜 : Type u_1} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [FiniteDimensional 𝕜 V] (U : Submodule 𝕜 V) (T : V →ₗ[𝕜] V) :
U.InvariantUnder T U.InvariantUnder (LinearMap.adjoint T)

$U$ is $T$-invariant if and only if $U^\bot$ is $T^*$ invariant

theorem Submodule.invariantUnder_iff_ortho_adjoint_invariant' {V : Type u_2} {𝕜 : Type u_1} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] (U : Submodule 𝕜 V) [CompleteSpace V] [hU : CompleteSpace U] (T : V →L[𝕜] V) :
U.InvariantUnder T U.InvariantUnder (ContinuousLinearMap.adjoint T)
theorem IsSelfAdjoint.submodule_invariant_iff_ortho_submodule_invariant {V : Type u_2} {𝕜 : Type u_1} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [FiniteDimensional 𝕜 V] (U : Submodule 𝕜 V) (T : V →ₗ[𝕜] V) (h : IsSelfAdjoint T) :
U.InvariantUnder T U.InvariantUnder T

$T$ is self adjoint implies $U$ is $T$-invariant if and only if $U^\bot$ is $T$-invariant

theorem ker_ortho_adjoint_range {V : Type u_3} {𝕜 : Type u_2} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] {W : Type u_1} [FiniteDimensional 𝕜 V] [NormedAddCommGroup W] [InnerProductSpace 𝕜 W] [FiniteDimensional 𝕜 W] (T : V →ₗ[𝕜] W) :
LinearMap.ker T = (LinearMap.range (LinearMap.adjoint T))

$\textnormal{ker}(T) = \textnormal{range}(T^*)^\bot$

theorem LinearMap.IsProj.isCompl_range_ker {V : Type u_1} {R : Type u_2} [Ring R] [AddCommGroup V] [Module R V] (U : Submodule R V) (T : V →ₗ[R] V) (h : LinearMap.IsProj U T) :

given any idempotent operator $T \in L(V)$, then is_compl T.ker T.range, in other words, there exists unique $v \in \textnormal{ker}(T)$ and $w \in \textnormal{range}(T)$ such that $x = v + w$

idempotent $T$ is self-adjoint if and only if $\textnormal{ker}(T)^\bot=\textnormal{range}(T)$

theorem LinearMap.isStarNormal_iff_adjoint {V : Type u_2} {𝕜 : Type u_1} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [FiniteDimensional 𝕜 V] (T : V →ₗ[𝕜] V) :
IsStarNormal T Commute T (LinearMap.adjoint T)

linear map is_star_normal if and only if it commutes with its adjoint

theorem ContinuousLinearMap.isStarNormal_iff_adjoint {V : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [CompleteSpace V] (T : V →L[𝕜] V) :
IsStarNormal T Commute T (ContinuousLinearMap.adjoint T)
theorem isSymmetric_hMul_adjoint_self {V : Type u_2} {𝕜 : Type u_1} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [FiniteDimensional 𝕜 V] (T : V →ₗ[𝕜] V) :
(T * LinearMap.adjoint T).IsSymmetric
theorem IsSymmetric.neg {V : Type u_2} {𝕜 : Type u_1} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] (T : V →ₗ[𝕜] V) (hT : T.IsSymmetric) :
(-T).IsSymmetric
theorem IsSymmetric.sub {V : Type u_2} {𝕜 : Type u_1} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] {T : V →ₗ[𝕜] V} {S : V →ₗ[𝕜] V} (hT : T.IsSymmetric) (hS : S.IsSymmetric) :
(T - S).IsSymmetric
theorem LinearMap.IsStarNormal.norm_eq_adjoint {V : Type u_2} {𝕜 : Type u_1} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [FiniteDimensional 𝕜 V] (T : V →ₗ[𝕜] V) :
IsStarNormal T ∀ (v : V), T v = (LinearMap.adjoint T) v

$T$ is normal if and only if $\forall v, \|T v\| = \|T^* v\|$

theorem ContinuousLinearMap.IsStarNormal.norm_eq_adjoint {V : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [CompleteSpace V] (T : V →L[𝕜] V) :
IsStarNormal T ∀ (v : V), T v = (ContinuousLinearMap.adjoint T) v

if $T$ is normal, then $\textnormal{ker}(T) = \textnormal{ker}(T^*)$

if $T$ is normal, then $\textnormal{range}(T)=\textnormal{range}(T^*)$

theorem ContinuousLinearMap.IsStarNormal.ker_eq_ker_adjoint {V : Type u_1} {𝕜 : Type u_2} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [CompleteSpace V] {T : V →L[𝕜] V} (h : IsStarNormal T) :
LinearMap.ker T = LinearMap.ker (ContinuousLinearMap.adjoint T)
theorem ContinuousLinearMap.ker_eq_ortho_adjoint_range {V : Type u_3} {𝕜 : Type u_2} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] {W : Type u_1} [NormedAddCommGroup W] [InnerProductSpace 𝕜 W] [CompleteSpace V] [CompleteSpace W] (T : V →L[𝕜] W) :
LinearMap.ker T = (LinearMap.range (ContinuousLinearMap.adjoint T))
theorem ContinuousLinearMap.ker_adjoint_eq_ortho_range {V : Type u_3} {𝕜 : Type u_2} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] {W : Type u_1} [NormedAddCommGroup W] [InnerProductSpace 𝕜 W] [CompleteSpace V] [CompleteSpace W] (T : V →L[𝕜] W) :
LinearMap.ker (ContinuousLinearMap.adjoint T) = (LinearMap.range T)

if $T$ is normal, then $\forall x \in V, x \in \textnormal{eigenspace}(T ,\mu) \iff x \in \textnormal{eigenspace}(T^* ,\bar{\mu})$

$T$ is injective if and only if $T^*$ is surjective

theorem LinearMap.injective_iff_adjoint_surjective {V : Type u_3} {𝕜 : Type u_2} [RCLike 𝕜] [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] {W : Type u_1} [NormedAddCommGroup W] [InnerProductSpace 𝕜 W] [FiniteDimensional 𝕜 W] [FiniteDimensional 𝕜 V] (T : V →ₗ[𝕜] W) :
Function.Injective T Function.Surjective (LinearMap.adjoint T)

$T$ is injective if and only if $T^*$ is surjective