Finite-dimensional inner product spaces #
In this file, we prove some results in finite-dimensional inner product spaces.
Notation #
This file uses the local notation P _
for orthogonal_projection _
and ↥P _
for the extended orthogonal projection orthogonal_projection' _
.
We let $V$ be an inner product space over $\mathbb{k}$.
$U$ is $T$-invariant if and only if $U^\bot$ is $T^*$ invariant
$T$ is self adjoint implies $U$ is $T$-invariant if and only if $U^\bot$ is $T$-invariant
$\textnormal{ker}(T) = \textnormal{range}(T^*)^\bot$
given any idempotent operator $T \in L(V)$, then is_compl T.ker T.range
,
in other words, there exists unique $v \in \textnormal{ker}(T)$ and $w \in \textnormal{range}(T)$ such that $x = v + w$
idempotent $T$ is self-adjoint if and only if $\textnormal{ker}(T)^\bot=\textnormal{range}(T)$
linear map is_star_normal
if and only if it commutes with its adjoint
$T$ is normal if and only if $\forall v, \|T v\| = \|T^* v\|$
if $T$ is normal, then $\textnormal{ker}(T) = \textnormal{ker}(T^*)$
if $T$ is normal, then $\textnormal{range}(T)=\textnormal{range}(T^*)$
if $T$ is normal, then $\forall x \in V, x \in \textnormal{eigenspace}(T ,\mu) \iff x \in \textnormal{eigenspace}(T^* ,\bar{\mu})$
$T$ is injective if and only if $T^*$ is surjective
$T$ is injective if and only if $T^*$ is surjective