Documentation

Monlib.LinearAlgebra.QuantumSet.QIso

@[reducible, inline]
noncomputable abbrev QFun.map_unit' {B₁ : Type u_1} {B₂ : Type u_2} [starAlgebra B₁] [starAlgebra B₂] [QuantumSet B₁] [QuantumSet B₂] {H : Type u_3} [NormedAddCommGroup H] [InnerProductSpace H] [FiniteDimensional H] (P : TensorProduct B₁ H →ₗ[] TensorProduct H B₂) :
Equations
Instances For
    @[reducible, inline]
    noncomputable abbrev QFun.map_mul' {B₁ : Type u_1} {B₂ : Type u_2} [starAlgebra B₁] [starAlgebra B₂] [QuantumSet B₁] [QuantumSet B₂] {H : Type u_3} [NormedAddCommGroup H] [InnerProductSpace H] [FiniteDimensional H] (P : TensorProduct B₁ H →ₗ[] TensorProduct H B₂) :
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[reducible, inline]
      noncomputable abbrev QFun.map_real' {B₁ : Type u_1} {B₂ : Type u_2} [starAlgebra B₁] [starAlgebra B₂] [QuantumSet B₁] [QuantumSet B₂] {H : Type u_3} [NormedAddCommGroup H] [InnerProductSpace H] [FiniteDimensional H] (P : TensorProduct B₁ H →ₗ[] TensorProduct H B₂) :
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        class QFun {B₁ : Type u_1} {B₂ : Type u_2} [starAlgebra B₁] [starAlgebra B₂] [QuantumSet B₁] [QuantumSet B₂] (H : Type u_3) [NormedAddCommGroup H] [InnerProductSpace H] [FiniteDimensional H] (P : TensorProduct B₁ H →ₗ[] TensorProduct H B₂) :
        Instances
          @[reducible, inline]
          noncomputable abbrev QFun.map_counit' {B₁ : Type u_1} {B₂ : Type u_2} [starAlgebra B₁] [starAlgebra B₂] [QuantumSet B₁] [QuantumSet B₂] {H : Type u_3} [NormedAddCommGroup H] [InnerProductSpace H] (P : TensorProduct B₁ H →ₗ[] TensorProduct H B₂) :
          Equations
          Instances For
            @[reducible, inline]
            noncomputable abbrev QFun.map_comul' {B₁ : Type u_1} {B₂ : Type u_2} [starAlgebra B₁] [starAlgebra B₂] [QuantumSet B₁] [QuantumSet B₂] {H : Type u_3} [NormedAddCommGroup H] [InnerProductSpace H] (P : TensorProduct B₁ H →ₗ[] TensorProduct H B₂) :
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem LinearMap.comp_rid_eq_rid_comp_rTensor {R : Type u_4} [CommSemiring R] {M : Type u_5} {M₂ : Type u_6} [AddCommMonoid M] [Module R M] [AddCommMonoid M₂] [Module R M₂] (f : M →ₗ[R] M₂) :
              theorem LinearMap.rTensor_lid_symm_comp_eq_assoc_symm_comp_lTensor_comp_lid_symm {R : Type u_4} [CommSemiring R] {M₁ : Type u_5} {M₂ : Type u_6} {M₃ : Type u_7} {M₄ : Type u_8} [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [AddCommMonoid M₄] [Module R M₁] [Module R M₂] [Module R M₃] [Module R M₄] (f : TensorProduct R M₁ M₂ →ₗ[R] TensorProduct R M₃ M₄) :
              rTensor M₄ (TensorProduct.lid R M₃).symm ∘ₗ f = (TensorProduct.assoc R R M₃ M₄).symm ∘ₗ lTensor R f ∘ₗ (TensorProduct.lid R (TensorProduct R M₁ M₂)).symm
              theorem LinearMap.rTensor_rTensor_eq_assoc_symm_comp_rTensor_comp_assoc {R : Type u_4} [CommSemiring R] {A : Type u_5} {B : Type u_6} {C : Type u_7} {D : Type u_8} [AddCommMonoid A] [AddCommMonoid B] [AddCommMonoid C] [AddCommMonoid D] [Module R A] [Module R B] [Module R C] [Module R D] (x : A →ₗ[R] D) :
              theorem rid_tensor {R : Type u_4} [CommSemiring R] {A : Type u_5} {B : Type u_6} [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] :
              theorem LinearMap.lTensor_one {R : Type u_4} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] :
              lTensor M₁ 1 = 1
              theorem LinearMap.rTensor_one {R : Type u_4} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] :
              rTensor M₁ 1 = 1
              noncomputable def QFun.qBijective.toLinearEquiv {B₁ : Type u_1} {B₂ : Type u_2} [starAlgebra B₁] [starAlgebra B₂] [QuantumSet B₁] [QuantumSet B₂] {H : Type u_3} [NormedAddCommGroup H] [InnerProductSpace H] [FiniteDimensional H] {P : TensorProduct B₁ H →ₗ[] TensorProduct H B₂} [hp : QFun H P] (h : hp.qBijective) :
              Equations
              Instances For
                theorem rankOne_one_one_eq {B₁ : Type u_1} {B₂ : Type u_2} [starAlgebra B₁] [starAlgebra B₂] [QuantumSet B₁] [QuantumSet B₂] :

                for any qBijective function P, we get P ∘ (|1⟩⟨1| ⊗ id) ∘ adjoint P = (id ⊗ |1⟩⟨1|).