instance
instFintypeSwap
{n' : Fin 2 → Type u_1}
[(i : Fin 2) → Fintype (n' i)]
(i : Fin 2)
:
Fintype (PiFinTwo.swap n' i)
Equations
- instFintypeSwap i = id (if h : i = 0 then ⋯.mpr inferInstance else ⋯.mpr inferInstance)
instance
instDecidableEqSwap
{n' : Fin 2 → Type u_1}
[(i : Fin 2) → DecidableEq (n' i)]
(i : Fin 2)
:
DecidableEq (PiFinTwo.swap n' i)
Equations
- instDecidableEqSwap i = id (if h : i = 0 then ⋯.mpr inferInstance else ⋯.mpr inferInstance)
def
MatProd_algEquiv_PiMat_swap
(n' : Fin 2 → Type u_1)
[(i : Fin 2) → Fintype (n' i)]
[(i : Fin 2) → DecidableEq (n' i)]
:
Equations
Instances For
def
Prod.swap_algEquiv
(α : Type u_1)
(β : Type u_2)
[Semiring α]
[Semiring β]
[Algebra ℂ α]
[Algebra ℂ β]
:
Equations
- Prod.swap_algEquiv α β = { toFun := fun (x : α × β) => x.swap, invFun := fun (x : β × α) => x.swap, left_inv := ⋯, right_inv := ⋯, map_mul' := ⋯, map_add' := ⋯, commutes' := ⋯ }
Instances For
def
PiMat_finTwo_swapAlgEquiv
{n' : Fin 2 → Type u_1}
[(i : Fin 2) → Fintype (n' i)]
[(i : Fin 2) → DecidableEq (n' i)]
:
Equations
- PiMat_finTwo_swapAlgEquiv = (MatProd_algEquiv_PiMat n').symm.trans ((Prod.swap_algEquiv (Matrix (n' 0) (n' 0) ℂ) (Matrix (n' 1) (n' 1) ℂ)).trans (MatProd_algEquiv_PiMat_swap n'))
Instances For
instance
instFintypePiFinTwo_same
{n : Type u_1}
[Fintype n]
(i : Fin 2)
:
Fintype (PiFinTwo_same n i)
Equations
- instFintypePiFinTwo_same i = inferInstance
instance
instDecidableEqPiFinTwo_same
{n : Type u_1}
[DecidableEq n]
(i : Fin 2)
:
DecidableEq (PiFinTwo_same n i)
Equations
- instDecidableEqPiFinTwo_same i = inferInstance
theorem
PiMat_finTwo_swapAlgEquiv_apply
{n' : Fin 2 → Type u_1}
[(i : Fin 2) → Fintype (n' i)]
[(i : Fin 2) → DecidableEq (n' i)]
(x : Matrix (n' 0) (n' 0) ℂ)
(y : Matrix (n' 1) (n' 1) ℂ)
:
PiMat_finTwo_swapAlgEquiv ((MatProd_algEquiv_PiMat n') (x, y)) = (MatProd_algEquiv_PiMat (PiFinTwo.swap n')) (y, x)
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
PiMat_finTwo_same_swapAlgEquiv_apply
{n : Type u_1}
[Fintype n]
[DecidableEq n]
(x : Matrix n n ℂ)
(y : Matrix n n ℂ)
:
PiMat_finTwo_same_swapAlgEquiv ((MatProd_algEquiv_PiMat (PiFinTwo_same n)) (x, y)) = (MatProd_algEquiv_PiMat (PiFinTwo_same n)) (y, x)
instance
MatProd_algEquiv_PiMat_same_invertible_of
{n : Type u_1}
[Fintype n]
[DecidableEq n]
{U : Matrix n n ℂ × Matrix n n ℂ}
(hU : Invertible U)
:
Invertible ((MatProd_algEquiv_PiMat (PiFinTwo_same n)) U)
Equations
- MatProd_algEquiv_PiMat_same_invertible_of hU = { invOf := (MatProd_algEquiv_PiMat (PiFinTwo_same n)) ⅟U, invOf_mul_self := ⋯, mul_invOf_self := ⋯ }
theorem
AlgEquiv.toPiMat_finTwo_same_inner_of_matrix_prod_inner
{n : Type u_1}
[Fintype n]
[DecidableEq n]
{f : (Matrix n n ℂ × Matrix n n ℂ) ≃ₐ[ℂ] Matrix n n ℂ × Matrix n n ℂ}
(hf : f.IsInner)
:
((MatProd_algEquiv_PiMat (PiFinTwo_same n)).symm.trans (f.trans (MatProd_algEquiv_PiMat (PiFinTwo_same n)))).IsInner
theorem
AlgEquiv.PiMat_finTwo_same
{n : Type u_1}
[Fintype n]
[DecidableEq n]
(f : PiMat ℂ (Fin 2) (PiFinTwo_same n) ≃ₐ[ℂ] PiMat ℂ (Fin 2) (PiFinTwo_same n))
:
theorem
PiMat.trace_eq_linearMap_trace_toEuclideanLM
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
(y : PiMat ℂ (ι × ι) fun (i : ι × ι) => p i.1 × p i.2)
:
PiMat.traceLinearMap y = ∑ x : ι × ι, (LinearMap.trace ℂ (EuclideanSpace ℂ (p x.1 × p x.2))) (PiMat_toEuclideanLM y x)
theorem
QuantumGraph.Real.dim_of_piMat_submodule_eq
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{A : PiMat ℂ ι p →ₗ[ℂ] PiMat ℂ ι p}
(hA : QuantumGraph.Real (PiMat ℂ ι p) A)
:
⋯.dim_of_piMat_submodule = ∑ i : ι × ι, Module.finrank ℂ ↥(hA.PiMat_submodule i)
theorem
Module.Dual.pi.IsFaithfulPosMap.includeBlock_right_inner
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{i : ι}
(x : PiMat ℂ ι p)
(y : Matrix (p i) (p i) ℂ)
:
theorem
LinearMap.proj_adjoint_apply
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
(i : ι)
(x : Matrix (p i) (p i) ℂ)
:
(LinearMap.adjoint (LinearMap.proj i)) x = Matrix.includeBlock x
theorem
LinearMap.proj_adjoint
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
(i : ι)
:
LinearMap.adjoint (LinearMap.proj i) = LinearMap.single ℂ (fun (r : ι) => Mat ℂ (p r)) i
theorem
LinearMap.single_adjoint
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
(i : ι)
:
LinearMap.adjoint (LinearMap.single ℂ (fun (r : ι) => Mat ℂ (p r)) i) = LinearMap.proj i
theorem
LinearMap.eq_sum_conj_adjoint_proj_comp_proj
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
(A : PiMat ℂ ι p →ₗ[ℂ] PiMat ℂ ι p)
:
A = ∑ i : ι × ι,
LinearMap.adjoint (LinearMap.proj i.1) ∘ₗ
(LinearMap.proj i.1 ∘ₗ A ∘ₗ LinearMap.adjoint (LinearMap.proj i.2)) ∘ₗ LinearMap.proj i.2
theorem
QuantumGraph.Real.piFinTwo_same_exists_matrix_map_eq_map_of_adjoint_and_dim_eq_one
{n : Type u_1}
[Fintype n]
[DecidableEq n]
{ψ : (i : Fin 2) → Module.Dual ℂ (Matrix (PiFinTwo_same n i) (PiFinTwo_same n i) ℂ)}
[hψ : ∀ (i : Fin 2), (ψ i).IsFaithfulPosMap]
{A : PiMat ℂ (Fin 2) (PiFinTwo_same n) →ₗ[ℂ] PiMat ℂ (Fin 2) (PiFinTwo_same n)}
(hA : QuantumGraph.Real (PiMat ℂ (Fin 2) (PiFinTwo_same n)) A)
(hA₂ : LinearMap.adjoint A = A)
(hd : ⋯.dim_of_piMat_submodule = 1)
:
LinearMap.adjoint (LinearMap.proj 0) ∘ₗ
LinearMap.proj 0 ∘ₗ A ∘ₗ LinearMap.adjoint (LinearMap.proj 0) ∘ₗ LinearMap.proj 0 = A ∨ LinearMap.adjoint (LinearMap.proj 1) ∘ₗ
LinearMap.proj 1 ∘ₗ A ∘ₗ LinearMap.adjoint (LinearMap.proj 1) ∘ₗ LinearMap.proj 1 = A
def
AlgHom.proj
(R : Type u_4)
{ι : Type u_5}
[CommSemiring R]
{φ : ι → Type u_6}
[(i : ι) → Semiring (φ i)]
[(i : ι) → Algebra R (φ i)]
(i : ι)
:
Equations
- AlgHom.proj R i = { toFun := fun (x : (i : ι) → φ i) => x i, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯, commutes' := ⋯ }
Instances For
theorem
AlgHom.proj_apply
{R : Type u_4}
{ι : Type u_5}
[CommSemiring R]
{φ : ι → Type u_6}
[(i : ι) → Semiring (φ i)]
[(i : ι) → Algebra R (φ i)]
(x : (i : ι) → φ i)
(i : ι)
:
(AlgHom.proj R i) x = x i
theorem
AlgHom.proj_toLinearMap
{R : Type u_4}
{ι : Type u_5}
[CommSemiring R]
{φ : ι → Type u_6}
[(i : ι) → Semiring (φ i)]
[(i : ι) → Algebra R (φ i)]
(i : ι)
:
(AlgHom.proj R i).toLinearMap = LinearMap.proj i
def
NonUnitalAlgHom.single
(R : Type u_4)
{ι : Type u_5}
[CommSemiring R]
[DecidableEq ι]
(φ : ι → Type u_6)
[(i : ι) → Semiring (φ i)]
[(i : ι) → Algebra R (φ i)]
(i : ι)
:
Equations
- NonUnitalAlgHom.single R φ i = { toFun := fun (x : φ i) => (LinearMap.single R φ i) x, map_smul' := ⋯, map_zero' := ⋯, map_add' := ⋯, map_mul' := ⋯ }
Instances For
theorem
NonUnitalAlgHom.single_apply
{R : Type u_4}
{ι : Type u_5}
[CommSemiring R]
[DecidableEq ι]
{φ : ι → Type u_6}
[(i : ι) → Semiring (φ i)]
[(i : ι) → Algebra R (φ i)]
(i : ι)
(x : φ i)
:
(NonUnitalAlgHom.single R φ i) x = Pi.single i x
theorem
NonUnitalAlgHom.single_toLinearMap
{R : Type u_4}
{ι : Type u_5}
[CommSemiring R]
[DecidableEq ι]
{φ : ι → Type u_6}
[(i : ι) → Semiring (φ i)]
[(i : ι) → Algebra R (φ i)]
(i : ι)
:
(NonUnitalAlgHom.single R φ i).toLinearMap = LinearMap.single R φ i
theorem
LinearMap.single_isReal
{R : Type u_4}
{ι : Type u_5}
[DecidableEq ι]
[Semiring R]
{φ : ι → Type u_6}
[(i : ι) → AddCommMonoid (φ i)]
[(i : ι) → Module R (φ i)]
[(i : ι) → StarAddMonoid (φ i)]
(i : ι)
:
LinearMap.IsReal (LinearMap.single R φ i)
theorem
LinearMap.proj_isReal
{R : Type u_4}
{ι : Type u_5}
[DecidableEq ι]
[Semiring R]
{φ : ι → Type u_6}
[(i : ι) → AddCommMonoid (φ i)]
[(i : ι) → Module R (φ i)]
[(i : ι) → StarAddMonoid (φ i)]
(i : ι)
:
theorem
LinearMap.single_comp_inj
{R : Type u_4}
{ι : Type u_5}
{B : Type u_6}
[Semiring R]
{φ : ι → Type u_7}
[(i : ι) → AddCommMonoid (φ i)]
[AddCommMonoid B]
[Module R B]
[(i : ι) → Module R (φ i)]
[DecidableEq ι]
(i : ι)
(f : B →ₗ[R] φ i)
(g : B →ₗ[R] φ i)
:
LinearMap.single R φ i ∘ₗ f = LinearMap.single R φ i ∘ₗ g ↔ f = g
theorem
LinearMap.comp_proj_inj
{R : Type u_4}
{ι : Type u_5}
{B : Type u_6}
[Semiring R]
{φ : ι → Type u_7}
[(i : ι) → AddCommMonoid (φ i)]
[AddCommMonoid B]
[Module R B]
[(i : ι) → Module R (φ i)]
[DecidableEq ι]
(i : ι)
(f : φ i →ₗ[R] B)
(g : φ i →ₗ[R] B)
:
f ∘ₗ LinearMap.proj i = g ∘ₗ LinearMap.proj i ↔ f = g
theorem
LinearMap.proj_comp_inj
{R : Type u_4}
{ι : Type u_5}
{B : Type u_6}
[Semiring R]
{φ : ι → Type u_7}
[(i : ι) → AddCommMonoid (φ i)]
[AddCommMonoid B]
[Module R B]
[(i : ι) → Module R (φ i)]
[DecidableEq ι]
(f : B →ₗ[R] (r : ι) → φ r)
(g : B →ₗ[R] (r : ι) → φ r)
:
(∀ (i : ι), LinearMap.proj i ∘ₗ f = LinearMap.proj i ∘ₗ g) ↔ f = g
theorem
QuantumGraph.isReal_iff_conj_proj_adjoint_isReal
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
(i : ι)
(f : Mat ℂ (p i) →ₗ[ℂ] Mat ℂ (p i))
:
QuantumGraph.Real (Mat ℂ (p i)) f ↔ QuantumGraph.Real (PiMat ℂ ι p) (LinearMap.adjoint (LinearMap.proj i) ∘ₗ f ∘ₗ LinearMap.proj i)
theorem
QuantumGraph.Real.conj_proj_isReal
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{f : PiMat ℂ ι p →ₗ[ℂ] PiMat ℂ ι p}
(hf : QuantumGraph.Real (PiMat ℂ ι p) f)
(i : ι)
:
QuantumGraph.Real (Mat ℂ (p i)) (LinearMap.proj i ∘ₗ f ∘ₗ LinearMap.adjoint (LinearMap.proj i))
theorem
schurMul_proj_adjoint_comp
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{B : Type u_4}
[starAlgebra B]
[QuantumSet B]
(i : ι)
(f : B →ₗ[ℂ] Mat ℂ (p i))
(g : B →ₗ[ℂ] Mat ℂ (p i))
:
(LinearMap.adjoint (LinearMap.proj i) ∘ₗ f) •ₛ LinearMap.adjoint (LinearMap.proj i) ∘ₗ g = LinearMap.adjoint (LinearMap.proj i) ∘ₗ f •ₛ g
theorem
schurMul_proj_comp
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{B : Type u_4}
[starAlgebra B]
[QuantumSet B]
(f : B →ₗ[ℂ] PiMat ℂ ι p)
(g : B →ₗ[ℂ] PiMat ℂ ι p)
(i : ι)
:
(LinearMap.proj i ∘ₗ f) •ₛ LinearMap.proj i ∘ₗ g = LinearMap.proj i ∘ₗ f •ₛ g
theorem
schurMul_comp_proj
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{B : Type u_4}
[starAlgebra B]
[QuantumSet B]
(i : ι)
(f : Mat ℂ (p i) →ₗ[ℂ] B)
(g : Mat ℂ (p i) →ₗ[ℂ] B)
:
(f ∘ₗ LinearMap.proj i) •ₛ g ∘ₗ LinearMap.proj i = (f •ₛ g) ∘ₗ LinearMap.proj i
theorem
schurMul_comp_proj_adjoint
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{B : Type u_4}
[starAlgebra B]
[QuantumSet B]
(f : PiMat ℂ ι p →ₗ[ℂ] B)
(g : PiMat ℂ ι p →ₗ[ℂ] B)
(i : ι)
:
(f ∘ₗ LinearMap.adjoint (LinearMap.proj i)) •ₛ g ∘ₗ LinearMap.adjoint (LinearMap.proj i) = (f •ₛ g) ∘ₗ LinearMap.adjoint (LinearMap.proj i)
theorem
QuantumGraph.Real.proj_adjoint_comp_proj_conj_isRealQuantumGraph
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{f : PiMat ℂ ι p →ₗ[ℂ] PiMat ℂ ι p}
(hf : QuantumGraph.Real (PiMat ℂ ι p) f)
(i : ι × ι)
:
QuantumGraph.Real (PiMat ℂ ι p)
(LinearMap.adjoint (LinearMap.proj i.1) ∘ₗ
LinearMap.proj i.1 ∘ₗ f ∘ₗ LinearMap.adjoint (LinearMap.proj i.2) ∘ₗ LinearMap.proj i.2)
theorem
schurMul_proj_adjoint_comp_of_ne_eq_zero
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{B : Type u_4}
[starAlgebra B]
[QuantumSet B]
{i : ι}
{j : ι}
(hij : i ≠ j)
(f : B →ₗ[ℂ] Mat ℂ (p i))
(g : B →ₗ[ℂ] Mat ℂ (p j))
:
(LinearMap.adjoint (LinearMap.proj i) ∘ₗ f) •ₛ LinearMap.adjoint (LinearMap.proj j) ∘ₗ g = 0
theorem
schurMul_comp_proj_of_ne_eq_zero
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{B : Type u_4}
[starAlgebra B]
[QuantumSet B]
{i : ι}
{j : ι}
(hij : i ≠ j)
(f : Mat ℂ (p i) →ₗ[ℂ] B)
(g : Mat ℂ (p j) →ₗ[ℂ] B)
:
(f ∘ₗ LinearMap.proj i) •ₛ g ∘ₗ LinearMap.proj j = 0
theorem
piMat_isRealQuantumGraph_iff_forall_conj_adjoint_proj_comp_proj
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{f : PiMat ℂ ι p →ₗ[ℂ] PiMat ℂ ι p}
:
QuantumGraph.Real (PiMat ℂ ι p) f ↔ ∀ (i : ι × ι),
QuantumGraph.Real (PiMat ℂ ι p)
(LinearMap.adjoint (LinearMap.proj i.1) ∘ₗ
LinearMap.proj i.1 ∘ₗ f ∘ₗ LinearMap.adjoint (LinearMap.proj i.2) ∘ₗ LinearMap.proj i.2)
theorem
Pi.single_zero_piFinTwo_same_apply
{n : Type u_1}
[Fintype n]
[DecidableEq n]
(x : Matrix n n ℂ)
:
Pi.single 0 x = (MatProd_algEquiv_PiMat (PiFinTwo_same n)) (x, 0)
theorem
Pi.single_one_piFinTwo_same_apply
{n : Type u_1}
[Fintype n]
[DecidableEq n]
(x : Matrix n n ℂ)
:
Pi.single 1 x = (MatProd_algEquiv_PiMat (PiFinTwo_same n)) (0, x)
theorem
PiMat_finTwo_same_swap_swap
{n : Type u_1}
[Fintype n]
[DecidableEq n]
(x : PiMat ℂ (Fin 2) (PiFinTwo_same n))
:
PiMat_finTwo_same_swapAlgEquiv (PiMat_finTwo_same_swapAlgEquiv x) = x
theorem
PiMat_finTwo_same_swapAlgEquiv_apply_piSingle_zero
{n : Type u_1}
[Fintype n]
[DecidableEq n]
(x : Matrix n n ℂ)
:
theorem
PiMat_finTwo_same_swapAlgEquiv_comp_linearMapSingle_zero
{n : Type u_1}
[Fintype n]
[DecidableEq n]
:
PiMat_finTwo_same_swapAlgEquiv.toLinearMap ∘ₗ LinearMap.single ℂ (fun (j : Fin 2) => Mat ℂ (PiFinTwo_same n j)) 0 = LinearMap.single ℂ (fun (j : Fin 2) => Mat ℂ (PiFinTwo_same n j)) 1
theorem
PiMat_finTwo_same_swapAlgEquiv_apply_piSingle_one
{n : Type u_1}
[Fintype n]
[DecidableEq n]
(x : Matrix n n ℂ)
:
theorem
PiMat_finTwo_same_swapAlgEquiv_comp_linearMapSingle_one
{n : Type u_1}
[Fintype n]
[DecidableEq n]
:
PiMat_finTwo_same_swapAlgEquiv.toLinearMap ∘ₗ LinearMap.single ℂ (fun (j : Fin 2) => Mat ℂ (PiFinTwo_same n j)) 1 = LinearMap.single ℂ (fun (j : Fin 2) => Mat ℂ (PiFinTwo_same n j)) 0
theorem
QuantumGraph.Real.schurProjection_proj_conj
{ι : Type u_2}
{p : ι → Type u_3}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → Fintype (p i)]
[(i : ι) → DecidableEq (p i)]
{φ : (i : ι) → Module.Dual ℂ (Matrix (p i) (p i) ℂ)}
[hφ : ∀ (i : ι), (φ i).IsFaithfulPosMap]
{f : PiMat ℂ ι p →ₗ[ℂ] PiMat ℂ ι p}
(hf : QuantumGraph.Real (PiMat ℂ ι p) f)
(i : ι × ι)
:
schurProjection (LinearMap.proj i.1 ∘ₗ f ∘ₗ LinearMap.adjoint (LinearMap.proj i.2))