Documentation

Monlib.QuantumGraph.Basic

theorem symmMap_apply_schurMul {A : Type u_1} {B : Type u_2} [starAlgebra A] [starAlgebra B] [hA : QuantumSet A] [QuantumSet B] (f g : A →ₗ[] B) :
(symmMap A B) (f •ₛ g) = (symmMap A B) g •ₛ (symmMap A B) f
theorem QuantumSet.modAut_star {A : Type u_1} [self : starAlgebra A] (r : ) (x : A) :
star ((modAut r) x) = (modAut (-r)) (star x)

Alias of starAlgebra.modAut_star.


applying star to modAut r x will give modAut (-r) (star x)

theorem Psi_apply_linearMap_comp_linearMap_of_commute_modAut {A : Type u_1} {B : Type u_2} {C : Type u_3} {D : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hc : starAlgebra C] [hd : starAlgebra D] [hA : QuantumSet A] [hB : QuantumSet B] [hC : QuantumSet C] [hD : QuantumSet D] {f : A →ₗ[] B} {g : D →ₗ[] C} (t r : ) (hf : (modAut t).toLinearMap ∘ₗ f = f ∘ₗ (modAut t).toLinearMap) (hg : (modAut r).toLinearMap ∘ₗ g = g ∘ₗ (modAut r).toLinearMap) (x : C →ₗ[] A) :
theorem symmMap_symm_comp {A : Type u_1} {B : Type u_2} {C : Type u_3} [starAlgebra A] [starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] [starAlgebra C] [QuantumSet C] (x : A →ₗ[] B) (y : C →ₗ[] A) :
(symmMap B C).symm (x ∘ₗ y) = (symmMap A C).symm y ∘ₗ (symmMap B A).symm x
theorem linearMap_map_Psi_of_commute_modAut {A : Type u_1} {B : Type u_2} {C : Type u_3} {D : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hc : starAlgebra C] [hd : starAlgebra D] [hA : QuantumSet A] [hB : QuantumSet B] [hC : QuantumSet C] [hD : QuantumSet D] {f : A →ₗ[] B} {g : Cᵐᵒᵖ →ₗ[] Dᵐᵒᵖ} (t r : ) (hf : (modAut t).toLinearMap ∘ₗ f = f ∘ₗ (modAut t).toLinearMap) (hg : (modAut r).toLinearMap ∘ₗ g.unop = g.unop ∘ₗ (modAut r).toLinearMap) (x : C →ₗ[] A) :
@[simp]
theorem LinearMap.op_real {K : Type u_1} {E : Type u_2} {F : Type u_3} [AddCommMonoid E] [StarAddMonoid E] [AddCommMonoid F] [StarAddMonoid F] [Semiring K] [Module K E] [Module K F] [InvolutiveStar K] [StarModule K E] [StarModule K F] (φ : E →ₗ[K] F) :
φ.op.real = φ.real.op
theorem modAut_map_comp_Psi {A : Type u_1} {B : Type u_2} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (t₁ r₁ t₂ r₂ : ) :
TensorProduct.map (modAut t₁).toLinearMap (AlgEquiv.op (modAut r₁)).toLinearMap ∘ₗ (QuantumSet.Psi t₂ r₂) = (QuantumSet.Psi (t₁ + t₂) (-r₁ + r₂))
theorem lTensor_modAut_comp_Psi {A : Type u_1} {B : Type u_2} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (t₂ r₁ r₂ : ) :
LinearMap.lTensor B (AlgEquiv.op (modAut r₁)).toLinearMap ∘ₗ (QuantumSet.Psi t₂ r₂) = (QuantumSet.Psi t₂ (-r₁ + r₂))
theorem rTensor_modAut_comp_Psi {A : Type u_1} {B : Type u_2} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (t₁ t₂ r₂ : ) :
LinearMap.rTensor Aᵐᵒᵖ (modAut t₁).toLinearMap ∘ₗ (QuantumSet.Psi t₂ r₂) = (QuantumSet.Psi (t₁ + t₂) r₂)
theorem rmulMapLmul_apply_Upsilon_apply {A : Type u_1} {B : Type u_2} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (x : A →ₗ[] B) (y : TensorProduct A B) :
@[simp]
theorem AlgEquiv.symm_one {R : Type u_3} {A : Type u_4} [CommSemiring R] [Semiring A] [Algebra R A] :
symm 1 = 1
theorem LinearMap.lTensor_eq {R : Type u_3} {M : Type u_4} {N : Type u_5} {P : Type u_6} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [Module R M] [Module R N] [Module R P] (f : N →ₗ[R] P) :
theorem AlgEquiv.symm_op {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (f : A ≃ₐ[R] B) :
(op f).symm = op f.symm
theorem QuantumSet.modAut_trans {A : Type u_1} [self : starAlgebra A] (r s : ) :
(modAut r).trans (modAut s) = modAut (r + s)

Alias of starAlgebra.modAut_trans.


the modular automorphism is an additive homomorphism from to (A ≃ₐ[ℂ] A, add := · * ·, zero := 1)

theorem isReal_iff_Psi {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (f : A →ₗ[] B) (t r : ) :
LinearMap.IsReal f star ((QuantumSet.Psi t r) f) = (QuantumSet.Psi (-t) (2 * k A + 1 - r)) f
theorem isReal_iff_Psi_isSelfAdjoint {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (f : A →ₗ[] B) :
theorem real_Upsilon_toBimodule {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] {f : A →ₗ[] B} (gns₁ : k A = 0) (gns₂ : k B = 0) :
class schurProjection {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (f : A →ₗ[] B) :
Instances
    theorem Coalgebra.comul_mul_of_gns {A : Type u_3} [ha : starAlgebra A] [hA : QuantumSet A] (gns : k A = 0) (a b : A) :
    comul (a * b) = i : n A, (a * onb i) ⊗ₜ[] (star (onb i) * b)
    theorem QuantumSet.innerOne_map_one_isReal_ofReal {A : Type u_5} {B : Type u_6} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] {f : A →ₗ[] B} (hf : LinearMap.IsReal f) :
    inner 1 (f 1) = (inner 1 (f 1)).re
    Equations
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      def Module.Dual.op {R : Type u_5} {A : Type u_6} [CommSemiring R] [AddCommMonoid A] [Module R A] (f : Dual R A) :
      Equations
      Instances For
        theorem Module.Dual.op_apply {R : Type u_5} {A : Type u_6} [CommSemiring R] [AddCommMonoid A] [Module R A] (f : Dual R A) (x : Aᵐᵒᵖ) :
        theorem Module.Dual.op_isFaithful_iff {𝕜 : Type u_5} {A : Type u_6} [RCLike 𝕜] [NonUnitalSemiring A] [StarRing A] [Module 𝕜 A] (φ : Dual 𝕜 A) :
        theorem MulOpposite.norm_eq {𝕜 : Type u_5} {H : Type u_6} [RCLike 𝕜] [NormedAddCommGroup H] (x : Hᵐᵒᵖ) :
        theorem Coalgebra.comul_mul {A : Type u_3} [ha : starAlgebra A] [hA : QuantumSet A] (a b : A) :
        comul (a * b) = i : n A, (a * (modAut (k A / 2)) (onb i)) ⊗ₜ[] (star ((modAut (k A / 2)) (onb i)) * b)
        theorem schurProjection.isPosMap {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] [PartialOrder A] [PartialOrder B] [StarOrderedRing B] (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) {f : A →ₗ[] B} (hf : schurProjection f) :
        theorem schurIdempotent.isSchurProjection_iff_isPosMap {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] [PartialOrder A] [PartialOrder B] [StarOrderedRing A] [StarOrderedRing B] (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) (hh : isEquivToPiMat A) {f : A →ₗ[] B} (hf : f •ₛ f = f) :
        class QuantumGraph (A : Type u_5) [starAlgebra A] [hA : QuantumSet A] (f : A →ₗ[] A) :
        Instances
          theorem quantumGraph_iff {A : Type u_5} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} :
          class QuantumGraph.IsReal {A : Type u_5} [starAlgebra A] [hA : QuantumSet A] {f : A →ₗ[] A} (h : QuantumGraph A f) :
          Instances
            class QuantumGraph.Real (A : Type u_5) [starAlgebra A] [hA : QuantumSet A] (f : A →ₗ[] A) :
            Instances
              theorem QuantumGraph.Real.toQuantumGraph {A : Type u_3} [ha : starAlgebra A] [hA : QuantumSet A] {f : A →ₗ[] A} (h : Real A f) :
              theorem StarAlgEquiv.toAlgEquiv_toAlgHom_toLinearMap {R : Type u_5} {A : Type u_6} {B : Type u_7} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] [Star A] [Star B] (f : A ≃⋆ₐ[R] B) :
              Equations
              • =
              Instances For
                theorem OrthonormalBasis.orthogonalProjection_eq_sum_rankOne {ι : Type u_5} {𝕜 : Type u_6} [RCLike 𝕜] {E : Type u_7} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] {U : Submodule 𝕜 E} [CompleteSpace U] (b : OrthonormalBasis ι 𝕜 U) :
                orthogonalProjection U = i : ι, ((rankOne 𝕜) (b i)) (b i)
                instance StarAlgEquivClass.instLinearMapClass {R : Type u_5} {A : Type u_6} {B : Type u_7} [Semiring R] [AddCommMonoid A] [AddCommMonoid B] [Mul A] [Mul B] [Module R A] [Module R B] [Star A] [Star B] {F : Type u_8} [EquivLike F A B] [NonUnitalAlgEquivClass F R A B] [StarHomClass F A B] :
                noncomputable def QuantumGraph.Real.upsilonSubmodule {A : Type u_3} [ha : starAlgebra A] [hA : QuantumSet A] {f : A →ₗ[] A} (gns : k A = 0) (hf : Real A f) :
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem OrthonormalBasis.tensorProduct_toBasis {𝕜 : Type u_5} {E : Type u_6} {F : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {ι₁ : Type u_8} {ι₂ : Type u_9} [Fintype ι₁] [Fintype ι₂] [DecidableEq ι₁] [DecidableEq ι₂] (b₁ : OrthonormalBasis ι₁ 𝕜 E) (b₂ : OrthonormalBasis ι₂ 𝕜 F) :
                  theorem TensorProduct.of_orthonormalBasis_eq_span {𝕜 : Type u_5} {E : Type u_6} {F : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] (x : TensorProduct 𝕜 E F) {ι₁ : Type u_8} {ι₂ : Type u_9} [Fintype ι₁] [Fintype ι₂] [DecidableEq ι₁] [DecidableEq ι₂] (b₁ : OrthonormalBasis ι₁ 𝕜 E) (b₂ : OrthonormalBasis ι₂ 𝕜 F) :
                  x = i : ι₁, j : ι₂, (b₁.tensorProduct b₂).repr x (i, j) b₁ i ⊗ₜ[𝕜] b₂ j
                  noncomputable def TensorProduct.of_orthonormalBasis_prod {𝕜 : Type u_5} {E : Type u_6} {F : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] (x : TensorProduct 𝕜 E F) {ι₁ : Type u_8} {ι₂ : Type u_9} [Fintype ι₁] [Fintype ι₂] [DecidableEq ι₁] [DecidableEq ι₂] (b₁ : OrthonormalBasis ι₁ 𝕜 E) (b₂ : OrthonormalBasis ι₂ 𝕜 F) :
                  ι₁ × ι₂E × F
                  Equations
                  Instances For
                    @[simp]
                    theorem TensorProduct.of_othonormalBasis_prod_eq {𝕜 : Type u_5} {E : Type u_6} {F : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] (x : TensorProduct 𝕜 E F) {ι₁ : Type u_8} {ι₂ : Type u_9} [Fintype ι₁] [Fintype ι₂] [DecidableEq ι₁] [DecidableEq ι₂] (b₁ : OrthonormalBasis ι₁ 𝕜 E) (b₂ : OrthonormalBasis ι₂ 𝕜 F) :
                    i : ι₁ × ι₂, (x.of_orthonormalBasis_prod b₁ b₂ i).1 ⊗ₜ[𝕜] (x.of_orthonormalBasis_prod b₁ b₂ i).2 = x
                    @[simp]
                    theorem TensorProduct.of_othonormalBasis_prod_eq' {𝕜 : Type u_5} {E : Type u_6} {F : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] (x : TensorProduct 𝕜 E F) {ι₁ : Type u_8} {ι₂ : Type u_9} [Fintype ι₁] [Fintype ι₂] [DecidableEq ι₁] [DecidableEq ι₂] (b₁ : OrthonormalBasis ι₁ 𝕜 E) (b₂ : OrthonormalBasis ι₂ 𝕜 F) :
                    i : ι₁ × ι₂, (x.of_orthonormalBasis_prod b₁ b₂ i).1 ⊗ₜ[𝕜] b₂ i.2 = x
                    theorem QuantumGraph.Real.upsilon_eq {A : Type u_3} [ha : starAlgebra A] [hA : QuantumSet A] {f : A →ₗ[] A} (hf : Real A f) (gns : k A = 0) :
                    let u := upsilonOrthonormalBasis gns hf; let b := onb; let a := fun (x : TensorProduct A A) (i : n A × n A) => (x.of_orthonormalBasis_prod b b i).1; f = (∑ i : Fin (Module.finrank (upsilonSubmodule gns hf)), j : n A × n A, inner (↑(u i)) 1 ((rankOne ) (b j.2)) ((modAut (-1)) (star (a (↑(u i)) j))))
                    theorem QuantumGraph.Real.upsilon_eq' {A : Type u_3} [ha : starAlgebra A] [hA : QuantumSet A] {f : A →ₗ[] A} (hf : Real A f) (gns : k A = 0) :
                    let u := upsilonOrthonormalBasis gns hf; let b := onb; let a := fun (x : TensorProduct A A) (i : n A × n A) => (x.of_orthonormalBasis_prod b b i).1; f = (∑ i : Fin (Module.finrank (upsilonSubmodule gns hf)), j : n A × n A, inner 1 (u i) ((rankOne ) (star (b j.2))) (a (↑(u i)) j))
                    noncomputable def TensorProduct.of_orthonormalBasis_prod₁_lm {𝕜 : Type u_5} {E : Type u_6} {F : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] {ι₁ : Type u_8} {ι₂ : Type u_9} [Fintype ι₁] [Fintype ι₂] [DecidableEq ι₁] [DecidableEq ι₂] (b₁ : OrthonormalBasis ι₁ 𝕜 E) (b₂ : OrthonormalBasis ι₂ 𝕜 F) :
                    TensorProduct 𝕜 E F →ₗ[𝕜] ι₁ × ι₂E
                    Equations
                    Instances For
                      theorem TensorProduct.of_orthonormalBasis_prod₁_lm_eq {𝕜 : Type u_5} {E : Type u_6} {F : Type u_7} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 F] {ι₁ : Type u_8} {ι₂ : Type u_9} [Fintype ι₁] [Fintype ι₂] [DecidableEq ι₁] [DecidableEq ι₂] (b₁ : OrthonormalBasis ι₁ 𝕜 E) (b₂ : OrthonormalBasis ι₂ 𝕜 F) (x : TensorProduct 𝕜 E F) (i : ι₁ × ι₂) :
                      theorem QuantumGraph.Real.upsilon_eq'' {A : Type u_3} [ha : starAlgebra A] [hA : QuantumSet A] {f : A →ₗ[] A} (hf : Real A f) (gns : k A = 0) :
                      let P := orthogonalProjection' (upsilonSubmodule gns hf); let a := fun (x : TensorProduct A A) (i : n A × n A) => (x.of_orthonormalBasis_prod onb onb i).1; f = (∑ j : n A × n A, ((rankOne ) (star (onb j.2))) (a (P 1) j))
                      theorem LinearMap.tensorProduct_map_isometry_of {𝕜 : Type u_5} {A : Type u_6} {B : Type u_7} {C : Type u_8} {D : Type u_9} [RCLike 𝕜] [NormedAddCommGroup A] [NormedAddCommGroup B] [NormedAddCommGroup C] [NormedAddCommGroup D] [InnerProductSpace 𝕜 A] [InnerProductSpace 𝕜 B] [InnerProductSpace 𝕜 C] [InnerProductSpace 𝕜 D] [FiniteDimensional 𝕜 A] [FiniteDimensional 𝕜 B] [FiniteDimensional 𝕜 C] [FiniteDimensional 𝕜 D] {f : A →ₗ[𝕜] B} (hf : Isometry f) {g : C →ₗ[𝕜] D} (hg : Isometry g) :
                      theorem StarAlgEquiv.tensorProduct_map_isometry_of {A : Type u_5} {B : Type u_6} {C : Type u_7} {D : Type u_8} [starAlgebra A] [starAlgebra B] [starAlgebra C] [starAlgebra D] [QuantumSet A] [QuantumSet B] [QuantumSet C] [QuantumSet D] {f : A ≃⋆ₐ[] B} (hf : Isometry f) {g : C ≃⋆ₐ[] D} (hg : Isometry g) :
                      noncomputable def LinearIsometryEquiv.TensorProduct.map {𝕜 : Type u_5} {A : Type u_6} {B : Type u_7} {C : Type u_8} {D : Type u_9} [RCLike 𝕜] [NormedAddCommGroup A] [NormedAddCommGroup B] [NormedAddCommGroup C] [NormedAddCommGroup D] [InnerProductSpace 𝕜 A] [InnerProductSpace 𝕜 B] [InnerProductSpace 𝕜 C] [InnerProductSpace 𝕜 D] [FiniteDimensional 𝕜 A] [FiniteDimensional 𝕜 B] [FiniteDimensional 𝕜 C] [FiniteDimensional 𝕜 D] (f : A ≃ₗᵢ[𝕜] B) (g : C ≃ₗᵢ[𝕜] D) :
                      Equations
                      Instances For
                        @[simp]
                        theorem LinearIsometryEquiv.TensorProduct.map_apply {𝕜 : Type u_5} {A : Type u_6} {B : Type u_7} {C : Type u_8} {D : Type u_9} [RCLike 𝕜] [NormedAddCommGroup A] [NormedAddCommGroup B] [NormedAddCommGroup C] [NormedAddCommGroup D] [InnerProductSpace 𝕜 A] [InnerProductSpace 𝕜 B] [InnerProductSpace 𝕜 C] [InnerProductSpace 𝕜 D] [FiniteDimensional 𝕜 A] [FiniteDimensional 𝕜 B] [FiniteDimensional 𝕜 C] [FiniteDimensional 𝕜 D] (f : A ≃ₗᵢ[𝕜] B) (g : C ≃ₗᵢ[𝕜] D) (x : TensorProduct 𝕜 A C) :
                        theorem LinearIsometryEquiv.TensorProduct.map_tmul {𝕜 : Type u_5} {A : Type u_6} {B : Type u_7} {C : Type u_8} {D : Type u_9} [RCLike 𝕜] [NormedAddCommGroup A] [NormedAddCommGroup B] [NormedAddCommGroup C] [NormedAddCommGroup D] [InnerProductSpace 𝕜 A] [InnerProductSpace 𝕜 B] [InnerProductSpace 𝕜 C] [InnerProductSpace 𝕜 D] [FiniteDimensional 𝕜 A] [FiniteDimensional 𝕜 B] [FiniteDimensional 𝕜 C] [FiniteDimensional 𝕜 D] (f : A ≃ₗᵢ[𝕜] B) (g : C ≃ₗᵢ[𝕜] D) (x : A) (y : C) :
                        (map f g) (x ⊗ₜ[𝕜] y) = f x ⊗ₜ[𝕜] g y
                        theorem oneHom_isometry_inner_one_right {𝕜 : Type u_5} {A : Type u_6} {B : Type u_7} [RCLike 𝕜] [NormedAddCommGroup A] [NormedAddCommGroup B] [InnerProductSpace 𝕜 A] [InnerProductSpace 𝕜 B] [One A] [One B] {F : Type u_8} [FunLike F A B] [LinearMapClass F 𝕜 A B] [OneHomClass F A B] {f : F} (hf : Isometry f) (x : A) :
                        inner (f x) 1 = inner x 1
                        theorem QuantumGraph.Real.upsilon_starAlgEquiv_conj_eq {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] {f : A →ₗ[] A} (gns : k A = 0) (gns₂ : k B = 0) (hf : Real A f) {φ : A ≃⋆ₐ[] B} ( : Isometry φ) :
                        let u := upsilonOrthonormalBasis gns hf; let b := onb; let a := fun (x : TensorProduct A A) (i : n A × n A) => (x.of_orthonormalBasis_prod b b i).1; φ.toLinearMap ∘ₗ f ∘ₗ LinearMap.adjoint φ.toLinearMap = (∑ i : Fin (Module.finrank (upsilonSubmodule gns hf)), j : n A × n A, p : n A × n A, (inner (φ (a (↑(u i)) p)) 1 * inner (φ (b p.2)) 1) ((rankOne ) (φ (b j.2))) ((modAut (-1)) (star (φ (a (↑(u i)) j)))))
                        theorem LinearMapClass.apply_rankOne_apply {E₁ : Type u_5} {E₂ : Type u_6} {E₃ : Type u_7} {𝕜 : Type u_8} [RCLike 𝕜] [NormedAddCommGroup E₁] [NormedAddCommGroup E₂] [NormedAddCommGroup E₃] [InnerProductSpace 𝕜 E₁] [InnerProductSpace 𝕜 E₂] [InnerProductSpace 𝕜 E₃] {F : Type u_9} [FunLike F E₁ E₃] [LinearMapClass F 𝕜 E₁ E₃] (x : E₁) (y z : E₂) (u : F) :
                        u ((((rankOne 𝕜) x) y) z) = (((rankOne 𝕜) (u x)) y) z
                        theorem Upsilon_apply_comp {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] {C : Type u_5} {D : Type u_6} [starAlgebra C] [QuantumSet C] [starAlgebra D] [QuantumSet D] {f : A →ₗ[] B} {g : D →ₗ[] C} (x : C →ₗ[] A) (hcd : k C = k D) (h : (modAut (k C + 1)).toLinearMap ∘ₗ g = g ∘ₗ (modAut (k D + 1)).toLinearMap) :
                        theorem TensorProduct.toIsBimoduleMap_comp {R : Type u_5} {H₁ : Type u_6} {H₂ : Type u_7} {H₃ : Type u_8} {H₄ : Type u_9} [CommSemiring R] [Semiring H₁] [Semiring H₂] [Semiring H₃] [Semiring H₄] [Algebra R H₁] [Algebra R H₂] [Algebra R H₃] [Algebra R H₄] {f : H₁ ≃ₐ[R] H₃} {g : H₂ ≃ₐ[R] H₄} {x : TensorProduct R H₁ H₂} :
                        theorem QuantumGraph.Real.upsilon_starAlgEquiv_conj_submodule {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] {f : A →ₗ[] A} (gns : k A = 0) (gns₂ : k B = 0) (hf : Real A f) {φ : A ≃⋆ₐ[] B} ( : Isometry φ) :
                        theorem PhiMap.apply_real {B : Type u_4} [hb : starAlgebra B] [hB : QuantumSet B] (gns : k B = 0) (A : B →ₗ[] B) :
                        theorem PhiMap_rankOne {B : Type u_4} [hb : starAlgebra B] [hB : QuantumSet B] (x y : B) :
                        theorem LinearMap.real_zero {B : Type u_4} [hb : starAlgebra B] [hB : QuantumSet B] :
                        real 0 = 0
                        Equations
                        Instances For