Equations
- QuantumSet.toSubset _k A = A
Instances For
Equations
Instances For
instance
instCoeFunSubset
(k : ℝ)
(A : Type u_1)
:
CoeFun (QuantumSet.subset k A) fun (x : QuantumSet.subset k A) => A
Equations
- instCoeFunSubset k A = { coe := ⇑(QuantumSet.toSubset_equiv k) }
instance
instInhabitedSubset
{new_k : ℝ}
(A : Type u_1)
[h : Inhabited A]
:
Inhabited (QuantumSet.subset new_k A)
Equations
- instInhabitedSubset A = h
Equations
- instRingSubset = h
Equations
- instStarSubset = h
instance
instSMulComplexSubset
{new_k : ℝ}
{A : Type u_1}
[h : SMul ℂ A]
:
SMul ℂ (QuantumSet.subset new_k A)
Equations
- instSMulComplexSubset = h
instance
instStarRingSubset
{new_k : ℝ}
{A : Type u_1}
[Ring A]
[h : StarRing A]
:
StarRing (QuantumSet.subset new_k A)
Equations
- instStarRingSubset = h
instance
instStarModuleComplexSubset
{new_k : ℝ}
{A : Type u_1}
[Star A]
[SMul ℂ A]
[h : StarModule ℂ A]
:
StarModule ℂ (QuantumSet.subset new_k A)
Equations
- ⋯ = h
def
QuantumSet.toSubset_algEquiv
(k : ℝ)
{A : Type u_1}
[Ring A]
[Algebra ℂ A]
:
A ≃ₐ[ℂ] QuantumSet.subset k A
Equations
- QuantumSet.toSubset_algEquiv k = AlgEquiv.refl
Instances For
theorem
QuantumSet.toSubset_algEquiv_eq_toSubset_equiv
{new_k : ℝ}
{A : Type u_1}
[Ring A]
[Algebra ℂ A]
(x : A)
:
(QuantumSet.toSubset_algEquiv new_k) x = (QuantumSet.toSubset_equiv new_k) x
theorem
QuantumSet.toSubset_algEquiv_symm_eq_toSubset_equiv
{new_k : ℝ}
{A : Type u_1}
[Ring A]
[Algebra ℂ A]
(x : QuantumSet.subset new_k A)
:
(QuantumSet.toSubset_algEquiv new_k).symm x = (QuantumSet.toSubset_equiv new_k).symm x
instance
QuantumSet.subsetStarAlgebra
{A : Type u_1}
[ha : starAlgebra A]
(k : ℝ)
:
starAlgebra (QuantumSet.subset k A)
Equations
- QuantumSet.subsetStarAlgebra k = starAlgebra.mk (fun (r : ℝ) => (QuantumSet.toSubset_algEquiv k).symm.trans ((modAut r).trans (QuantumSet.toSubset_algEquiv k))) ⋯ ⋯
theorem
QuantumSet.subsetStarAlgebra_modAut_apply
{new_k : ℝ}
{A : Type u_1}
[ha : starAlgebra A]
(r : ℝ)
(x : QuantumSet.subset new_k A)
:
(modAut r) x = (QuantumSet.toSubset_equiv new_k) ((modAut r) ((QuantumSet.toSubset_equiv new_k).symm x))
theorem
QuantumSet.subsetStarAlgebra_modAut_apply'
{new_k : ℝ}
{A : Type u_1}
[ha : starAlgebra A]
(r : ℝ)
(x : A)
:
(modAut r) ((QuantumSet.toSubset_equiv new_k) x) = (QuantumSet.toSubset_equiv new_k) ((modAut r) x)
theorem
QuantumSet.subsetStarAlgebra_modAut_apply''
{new_k : ℝ}
{A : Type u_1}
[ha : starAlgebra A]
(r : ℝ)
(x : QuantumSet.subset new_k A)
:
(QuantumSet.toSubset_equiv new_k).symm ((modAut r) x) = (modAut r) ((QuantumSet.toSubset_equiv new_k).symm x)
noncomputable def
QuantumSet.subset_normedAddCommGroup
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
(new_k : ℝ)
:
NormedAddCommGroup (QuantumSet.subset new_k A)
Equations
- QuantumSet.subset_normedAddCommGroup new_k = InnerProductSpace.Core.toNormedAddCommGroup
Instances For
noncomputable def
QuantumSet.subset_innerProductSpace
{A : Type u_1}
[ha : starAlgebra A]
(hA : QuantumSet A)
(new_k : ℝ)
:
InnerProductSpace ℂ (QuantumSet.subset new_k A)
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable instance
QuantumSet.subset_innerProductAlgebra
{A : Type u_1}
[ha : starAlgebra A]
(hA : QuantumSet A)
(new_k : ℝ)
:
InnerProductAlgebra (QuantumSet.subset new_k A)
Equations
- hA.subset_innerProductAlgebra new_k = InnerProductAlgebra.mk ⋯ ⋯ ⋯ ⋯ ⋯
theorem
QuantumSet.subset_inner_eq
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
(new_k : ℝ)
(x : QuantumSet.subset new_k A)
(y : QuantumSet.subset new_k A)
:
inner x y = inner ((QuantumSet.toSubset_equiv new_k).symm x) ((modAut (new_k + -k A)) ((QuantumSet.toSubset_equiv new_k).symm y))
theorem
QuantumSet.inner_eq_subset_inner
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
(new_k : ℝ)
(x : A)
(y : A)
:
inner x y = inner ((QuantumSet.toSubset_equiv new_k) x) ((QuantumSet.toSubset_equiv new_k) ((modAut (k A + -new_k)) y))
noncomputable instance
QuantumSet.instSubset
{A : Type u_1}
[ha : starAlgebra A]
(hA : QuantumSet A)
(new_k : ℝ)
:
QuantumSet (QuantumSet.subset new_k A)
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev
LinearMap.toSubsetQuantumSet
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
(f : A →ₗ[ℂ] B)
(sk₁ : ℝ)
(sk₂ : ℝ)
:
QuantumSet.subset sk₁ A →ₗ[ℂ] QuantumSet.subset sk₂ B
Equations
- f.toSubsetQuantumSet sk₁ sk₂ = (QuantumSet.toSubset_algEquiv sk₂).toLinearMap ∘ₗ f ∘ₗ (QuantumSet.toSubset_algEquiv sk₁).symm.toLinearMap
Instances For
@[reducible, inline]
abbrev
LinearMap.ofSubsetQuantumSet
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
(sk₁ : ℝ)
(sk₂ : ℝ)
(f : QuantumSet.subset sk₁ A →ₗ[ℂ] QuantumSet.subset sk₂ B)
:
Equations
- LinearMap.ofSubsetQuantumSet sk₁ sk₂ f = (QuantumSet.toSubset_algEquiv sk₂).symm.toLinearMap ∘ₗ f ∘ₗ (QuantumSet.toSubset_algEquiv sk₁).toLinearMap
Instances For
theorem
QuantumSet.toSubset_algEquiv_adjoint
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
(sk₁ : ℝ)
:
LinearMap.adjoint (QuantumSet.toSubset_algEquiv sk₁).toLinearMap = (modAut (sk₁ + -k A)).toLinearMap ∘ₗ (QuantumSet.toSubset_algEquiv sk₁).symm.toLinearMap
theorem
QuantumSet.toSubset_algEquiv_symm_adjoint
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
(sk₁ : ℝ)
:
LinearMap.adjoint (QuantumSet.toSubset_algEquiv sk₁).symm.toLinearMap = (QuantumSet.toSubset_algEquiv sk₁).toLinearMap ∘ₗ (modAut (-sk₁ + k A)).toLinearMap
theorem
LinearMap.toSubsetQuantumSet_apply
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
(f : A →ₗ[ℂ] B)
(sk₁ : ℝ)
(sk₂ : ℝ)
(x : QuantumSet.subset sk₁ A)
:
(f.toSubsetQuantumSet sk₁ sk₂) x = (QuantumSet.toSubset_equiv sk₂) (f ((QuantumSet.toSubset_equiv sk₁).symm x))
theorem
LinearMap.toSubsetQuantumSet_adjoint_apply
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(f : A →ₗ[ℂ] B)
(sk₁ : ℝ)
(sk₂ : ℝ)
:
theorem
LinearMap.ofSubsetQuantumSet_adjoint_apply
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(sk₁ : ℝ)
(sk₂ : ℝ)
(f : QuantumSet.subset sk₁ A →ₗ[ℂ] QuantumSet.subset sk₂ B)
:
theorem
rankOne_toSubsetQuantumSet
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(sk₁ : ℝ)
(sk₂ : ℝ)
(a : B)
(b : A)
:
theorem
rankOne_ofSubsetQuantumSet
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(sk₁ : ℝ)
(sk₂ : ℝ)
(a : QuantumSet.subset sk₂ B)
(b : QuantumSet.subset sk₁ A)
:
LinearMap.ofSubsetQuantumSet sk₁ sk₂ ↑(((rankOne ℂ) a) b) = ↑(((rankOne ℂ) ((QuantumSet.toSubset_equiv sk₂).symm a))
((modAut (sk₁ + -k A)) ((QuantumSet.toSubset_equiv sk₁).symm b)))
@[simp]
theorem
QuantumSet.subset_k
{A : Type u_2}
[starAlgebra A]
[h : QuantumSet A]
(r : ℝ)
:
k (QuantumSet.subset r A) = r
@[simp]
theorem
QuantumSet.subset_n
{A : Type u_2}
[starAlgebra A]
[h : QuantumSet A]
(r : ℝ)
:
n (QuantumSet.subset r A) = n A
noncomputable def
QuantumSet.subset_tensor_algEquiv
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
(r : ℝ)
:
TensorProduct ℂ (QuantumSet.subset r A) (QuantumSet.subset r B) ≃ₐ[ℂ] QuantumSet.subset r (TensorProduct ℂ A B)
Equations
- QuantumSet.subset_tensor_algEquiv r = (AlgEquiv.TensorProduct.map (QuantumSet.toSubset_algEquiv r).symm (QuantumSet.toSubset_algEquiv r).symm).trans (QuantumSet.toSubset_algEquiv r)
Instances For
theorem
QuantumSet.subset_tensor_algEquiv_tmul
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
(r : ℝ)
(x : QuantumSet.subset r A)
(y : QuantumSet.subset r B)
:
(QuantumSet.subset_tensor_algEquiv r) (x ⊗ₜ[ℂ] y) = (QuantumSet.toSubset_algEquiv r)
((QuantumSet.toSubset_algEquiv r).symm x ⊗ₜ[ℂ] (QuantumSet.toSubset_algEquiv r).symm y)
theorem
QuantumSet.subset_tensor_algEquiv_symm_tmul
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
(r : ℝ)
(a : A)
(b : B)
:
(QuantumSet.subset_tensor_algEquiv r).symm ((QuantumSet.toSubset_algEquiv r) (a ⊗ₜ[ℂ] b)) = (QuantumSet.toSubset_algEquiv r) ((QuantumSet.toSubset_algEquiv r) a ⊗ₜ[ℂ] (QuantumSet.toSubset_algEquiv r) b)
theorem
LinearMap.mul'_quantumSet_subset_eq
{A : Type u_2}
[starAlgebra A]
[QuantumSet A]
(r : ℝ)
:
LinearMap.mul' ℂ (QuantumSet.subset r A) = (QuantumSet.toSubset_algEquiv r).toLinearMap ∘ₗ
LinearMap.mul' ℂ A ∘ₗ
TensorProduct.map (QuantumSet.toSubset_algEquiv r).symm.toLinearMap
(QuantumSet.toSubset_algEquiv r).symm.toLinearMap
theorem
QuantumSet.subset_tensor_algEquiv_adjoint
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
[h : Fact (k A = k B)]
(r : ℝ)
:
LinearMap.adjoint (QuantumSet.subset_tensor_algEquiv r).toLinearMap = (QuantumSet.subset_tensor_algEquiv r).symm.toLinearMap
theorem
QuantumSet.comul_subset_eq
{A : Type u_2}
[starAlgebra A]
[QuantumSet A]
(r : ℝ)
:
Coalgebra.comul = TensorProduct.map (QuantumSet.toSubset_algEquiv r).toLinearMap (QuantumSet.toSubset_algEquiv r).toLinearMap ∘ₗ
Coalgebra.comul ∘ₗ (QuantumSet.toSubset_algEquiv r).symm.toLinearMap
theorem
schurMul_toSubsetQuantumSet
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
{f : A →ₗ[ℂ] B}
(r₁ : ℝ)
(r₂ : ℝ)
:
f.toSubsetQuantumSet r₁ r₂ •ₛ f.toSubsetQuantumSet r₁ r₂ = (f •ₛ f).toSubsetQuantumSet r₁ r₂
theorem
LinearMap.toSubsetQuantumSet_inj
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
{f : A →ₗ[ℂ] B}
{g : A →ₗ[ℂ] B}
(r₁ : ℝ)
(r₂ : ℝ)
:
theorem
LinearMap.toSubsetQuantumSet_isReal_iff
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
{f : A →ₗ[ℂ] B}
(r₁ : ℝ)
(r₂ : ℝ)
:
LinearMap.IsReal (f.toSubsetQuantumSet r₁ r₂) ↔ LinearMap.IsReal f
theorem
QuantumSet.toSubset_onb
{A : Type u_2}
[starAlgebra A]
[hA : QuantumSet A]
(r : ℝ)
(i : n A)
:
theorem
QuantumSet.comul_of_subset
{A : Type u_2}
[starAlgebra A]
[hA : QuantumSet A]
(r : ℝ)
:
Coalgebra.comul = TensorProduct.map (QuantumSet.toSubset_algEquiv r).symm.toLinearMap
(QuantumSet.toSubset_algEquiv r).symm.toLinearMap ∘ₗ
Coalgebra.comul ∘ₗ (QuantumSet.toSubset_algEquiv r).toLinearMap
theorem
QuantumSet.innerOne_map_one_toSubset_eq
{A : Type u_3}
{B : Type u_4}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
(r₁ : ℝ)
(r₂ : ℝ)
{f : A →ₗ[ℂ] B}
:
Equations
- instPartialOrderSubset r = hA
instance
instNonUnitalNonAssocSemiringSubset
{A : Type u_3}
[hA : NonUnitalNonAssocSemiring A]
(r : ℝ)
:
Equations
Equations
instance
instStarRingSubset_1
{A : Type u_3}
[NonUnitalNonAssocSemiring A]
[hA : StarRing A]
(r : ℝ)
:
StarRing (QuantumSet.subset r A)
Equations
- instStarRingSubset_1 r = hA
instance
instStarOrderedRingSubset
{A : Type u_3}
[NonUnitalSemiring A]
[PartialOrder A]
[StarRing A]
[hA : StarOrderedRing A]
(r : ℝ)
:
Equations
- ⋯ = hA
instance
instNontrivialSubset
{A : Type u_3}
[hA : Nontrivial A]
(r : ℝ)
:
Nontrivial (QuantumSet.subset r A)
Equations
- ⋯ = hA
theorem
LinearMap.toSubsetQuantumSet_eq_iff
{A : Type u_3}
{B : Type u_4}
[ha : starAlgebra A]
[starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(sk₁ : ℝ)
(sk₂ : ℝ)
(f : A →ₗ[ℂ] B)
(g : QuantumSet.subset sk₁ A →ₗ[ℂ] QuantumSet.subset sk₂ B)
:
f.toSubsetQuantumSet sk₁ sk₂ = g ↔ f = LinearMap.ofSubsetQuantumSet sk₁ sk₂ g