Documentation

Monlib.LinearAlgebra.QuantumSet.Subset

def QuantumSet.toSubset (_k : ) (A : Type u_1) :
Type u_1
Equations
Instances For
    def QuantumSet.toSubset_equiv (k : ) {A : Type u_1} :
    Equations
    Instances For
      @[reducible, inline]
      abbrev QuantumSet.subset (k : ) (A : Type u_1) :
      Type u_1
      Equations
      Instances For
        instance instCoeFunSubset (k : ) (A : Type u_1) :
        CoeFun (QuantumSet.subset k A) fun (x : QuantumSet.subset k A) => A
        Equations
        instance instInhabitedSubset {new_k : } (A : Type u_1) [h : Inhabited A] :
        Equations
        instance instRingSubset {new_k : } {A : Type u_1} [h : Ring A] :
        Equations
        instance instAlgebraComplexSubset {new_k : } {A : Type u_1} [Ring A] [h : Algebra A] :
        Equations
        instance instStarSubset {new_k : } {A : Type u_1} [h : Star A] :
        Equations
        instance instSMulComplexSubset {new_k : } {A : Type u_1} [h : SMul A] :
        Equations
        instance instStarRingSubset {new_k : } {A : Type u_1} [Ring A] [h : StarRing A] :
        Equations
        instance instStarModuleComplexSubset {new_k : } {A : Type u_1} [Star A] [SMul A] [h : StarModule A] :
        theorem QuantumSet.toSubset_algEquiv_eq_toSubset_equiv {new_k : } {A : Type u_1} [Ring A] [Algebra A] (x : A) :
        (toSubset_algEquiv new_k) x = (toSubset_equiv new_k) x
        theorem QuantumSet.subsetStarAlgebra_modAut_apply {new_k : } {A : Type u_1} [ha : starAlgebra A] (r : ) (x : subset new_k A) :
        (modAut r) x = (toSubset_equiv new_k) ((modAut r) ((toSubset_equiv new_k).symm x))
        theorem QuantumSet.subsetStarAlgebra_modAut_apply' {new_k : } {A : Type u_1} [ha : starAlgebra A] (r : ) (x : A) :
        (modAut r) ((toSubset_equiv new_k) x) = (toSubset_equiv new_k) ((modAut r) x)
        theorem QuantumSet.subsetStarAlgebra_modAut_apply'' {new_k : } {A : Type u_1} [ha : starAlgebra A] (r : ) (x : subset new_k A) :
        (toSubset_equiv new_k).symm ((modAut r) x) = (modAut r) ((toSubset_equiv new_k).symm x)
        noncomputable def QuantumSet.subset_innerProductSpace {A : Type u_1} [ha : starAlgebra A] (hA : QuantumSet A) (new_k : ) :
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          noncomputable instance QuantumSet.subset_innerProductAlgebra {A : Type u_1} [ha : starAlgebra A] (hA : QuantumSet A) (new_k : ) :
          Equations
          theorem QuantumSet.subset_inner_eq {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] (new_k : ) (x y : subset new_k A) :
          inner x y = inner ((toSubset_equiv new_k).symm x) ((modAut (new_k + -k A)) ((toSubset_equiv new_k).symm y))
          theorem QuantumSet.inner_eq_subset_inner {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] (new_k : ) (x y : A) :
          inner x y = inner ((toSubset_equiv new_k) x) ((toSubset_equiv new_k) ((modAut (k A + -new_k)) y))
          noncomputable instance QuantumSet.instSubset {A : Type u_1} [ha : starAlgebra A] (hA : QuantumSet A) (new_k : ) :
          QuantumSet (subset new_k A)
          Equations
          • One or more equations did not get rendered due to their size.
          @[reducible, inline]
          abbrev LinearMap.toSubsetQuantumSet {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [starAlgebra B] [QuantumSet A] [QuantumSet B] (f : A →ₗ[] B) (sk₁ sk₂ : ) :
          Equations
          Instances For
            @[reducible, inline]
            abbrev LinearMap.ofSubsetQuantumSet {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [starAlgebra B] [QuantumSet A] [QuantumSet B] (sk₁ sk₂ : ) (f : QuantumSet.subset sk₁ A →ₗ[] QuantumSet.subset sk₂ B) :
            Equations
            Instances For
              theorem LinearMap.toSubsetQuantumSet_apply {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [starAlgebra B] [QuantumSet A] [QuantumSet B] (f : A →ₗ[] B) (sk₁ sk₂ : ) (x : QuantumSet.subset sk₁ A) :
              theorem LinearMap.toSubsetQuantumSet_adjoint_apply {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (f : A →ₗ[] B) (sk₁ sk₂ : ) :
              adjoint (f.toSubsetQuantumSet sk₁ sk₂) = ((modAut (-sk₁ + k A)).toLinearMap ∘ₗ adjoint f ∘ₗ (modAut (sk₂ + -k B)).toLinearMap).toSubsetQuantumSet sk₂ sk₁
              theorem LinearMap.ofSubsetQuantumSet_adjoint_apply {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (sk₁ sk₂ : ) (f : QuantumSet.subset sk₁ A →ₗ[] QuantumSet.subset sk₂ B) :
              adjoint (ofSubsetQuantumSet sk₁ sk₂ f) = (modAut (sk₁ + -k A)).toLinearMap ∘ₗ ofSubsetQuantumSet sk₂ sk₁ (adjoint f) ∘ₗ (modAut (-sk₂ + k B)).toLinearMap
              theorem rankOne_toSubsetQuantumSet {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (sk₁ sk₂ : ) (a : B) (b : A) :
              (↑(((rankOne ) a) b)).toSubsetQuantumSet sk₁ sk₂ = (((rankOne ) ((QuantumSet.toSubset_equiv sk₂) a)) ((QuantumSet.toSubset_equiv sk₁) ((modAut (-sk₁ + k A)) b)))
              theorem rankOne_ofSubsetQuantumSet {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (sk₁ sk₂ : ) (a : QuantumSet.subset sk₂ B) (b : QuantumSet.subset sk₁ A) :
              LinearMap.ofSubsetQuantumSet sk₁ sk₂ (((rankOne ) a) b) = (((rankOne ) ((QuantumSet.toSubset_equiv sk₂).symm a)) ((modAut (sk₁ + -k A)) ((QuantumSet.toSubset_equiv sk₁).symm b)))
              @[simp]
              theorem QuantumSet.subset_k {A : Type u_2} [starAlgebra A] [h : QuantumSet A] (r : ) :
              k (subset r A) = r
              @[simp]
              theorem QuantumSet.subset_n {A : Type u_2} [starAlgebra A] [h : QuantumSet A] (r : ) :
              n (subset r A) = n A
              theorem schurMul_toSubsetQuantumSet {A : Type u_2} {B : Type u_3} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] {f : A →ₗ[] B} (r₁ r₂ : ) :
              f.toSubsetQuantumSet r₁ r₂ •ₛ f.toSubsetQuantumSet r₁ r₂ = (f •ₛ f).toSubsetQuantumSet r₁ r₂
              theorem LinearMap.toSubsetQuantumSet_inj {A : Type u_2} {B : Type u_3} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] {f g : A →ₗ[] B} (r₁ r₂ : ) :
              f.toSubsetQuantumSet r₁ r₂ = g.toSubsetQuantumSet r₁ r₂ f = g
              theorem LinearMap.toSubsetQuantumSet_isReal_iff {A : Type u_2} {B : Type u_3} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] {f : A →ₗ[] B} (r₁ r₂ : ) :
              theorem QuantumSet.toSubset_onb {A : Type u_2} [starAlgebra A] [hA : QuantumSet A] (r : ) (i : n A) :
              onb i = (toSubset_algEquiv r) ((modAut (k A / 2 + -(r / 2))) (onb i))
              theorem QuantumSet.innerOne_map_one_toSubset_eq {A : Type u_3} {B : Type u_4} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] (r₁ r₂ : ) {f : A →ₗ[] B} :
              inner 1 (f 1) = inner 1 ((f.toSubsetQuantumSet r₁ r₂) 1)
              theorem LinearMap.toSubsetQuantumSet_eq_iff {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (sk₁ sk₂ : ) (f : A →ₗ[] B) (g : QuantumSet.subset sk₁ A →ₗ[] QuantumSet.subset sk₂ B) :
              f.toSubsetQuantumSet sk₁ sk₂ = g f = ofSubsetQuantumSet sk₁ sk₂ g