Equations
- QuantumSet.toSubset _k A = A
Instances For
Equations
Instances For
instance
instCoeFunSubset
(k : ℝ)
(A : Type u_1)
:
CoeFun (QuantumSet.subset k A) fun (x : QuantumSet.subset k A) => A
Equations
- instCoeFunSubset k A = { coe := ⇑(QuantumSet.toSubset_equiv k) }
instance
instInhabitedSubset
{new_k : ℝ}
(A : Type u_1)
[h : Inhabited A]
:
Inhabited (QuantumSet.subset new_k A)
Equations
- instInhabitedSubset A = h
Equations
instance
instAlgebraComplexSubset
{new_k : ℝ}
{A : Type u_1}
[Ring A]
[h : Algebra ℂ A]
:
Algebra ℂ (QuantumSet.subset new_k A)
Equations
Equations
instance
instSMulComplexSubset
{new_k : ℝ}
{A : Type u_1}
[h : SMul ℂ A]
:
SMul ℂ (QuantumSet.subset new_k A)
Equations
instance
instStarRingSubset
{new_k : ℝ}
{A : Type u_1}
[Ring A]
[h : StarRing A]
:
StarRing (QuantumSet.subset new_k A)
Equations
instance
instStarModuleComplexSubset
{new_k : ℝ}
{A : Type u_1}
[Star A]
[SMul ℂ A]
[h : StarModule ℂ A]
:
StarModule ℂ (QuantumSet.subset new_k A)
Equations
Instances For
instance
QuantumSet.subsetStarAlgebra
{A : Type u_1}
[ha : starAlgebra A]
(k : ℝ)
:
starAlgebra (subset k A)
Equations
- QuantumSet.subsetStarAlgebra k = starAlgebra.mk (fun (r : ℝ) => (QuantumSet.toSubset_algEquiv k).symm.trans ((modAut r).trans (QuantumSet.toSubset_algEquiv k))) ⋯ ⋯
theorem
QuantumSet.subsetStarAlgebra_modAut_apply
{new_k : ℝ}
{A : Type u_1}
[ha : starAlgebra A]
(r : ℝ)
(x : subset new_k A)
:
theorem
QuantumSet.subsetStarAlgebra_modAut_apply'
{new_k : ℝ}
{A : Type u_1}
[ha : starAlgebra A]
(r : ℝ)
(x : A)
:
theorem
QuantumSet.subsetStarAlgebra_modAut_apply''
{new_k : ℝ}
{A : Type u_1}
[ha : starAlgebra A]
(r : ℝ)
(x : subset new_k A)
:
noncomputable def
QuantumSet.subset_normedAddCommGroup
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
(new_k : ℝ)
:
NormedAddCommGroup (subset new_k A)
Instances For
noncomputable def
QuantumSet.subset_innerProductSpace
{A : Type u_1}
[ha : starAlgebra A]
(hA : QuantumSet A)
(new_k : ℝ)
:
InnerProductSpace ℂ (subset new_k A)
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable instance
QuantumSet.subset_innerProductAlgebra
{A : Type u_1}
[ha : starAlgebra A]
(hA : QuantumSet A)
(new_k : ℝ)
:
InnerProductAlgebra (subset new_k A)
Equations
- hA.subset_innerProductAlgebra new_k = InnerProductAlgebra.mk ⋯ ⋯ ⋯ ⋯ ⋯
theorem
QuantumSet.subset_inner_eq
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
(new_k : ℝ)
(x y : subset new_k A)
:
theorem
QuantumSet.inner_eq_subset_inner
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
(new_k : ℝ)
(x y : A)
:
noncomputable instance
QuantumSet.instSubset
{A : Type u_1}
[ha : starAlgebra A]
(hA : QuantumSet A)
(new_k : ℝ)
:
QuantumSet (subset new_k A)
Equations
- One or more equations did not get rendered due to their size.
@[reducible, inline]
abbrev
LinearMap.toSubsetQuantumSet
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
(f : A →ₗ[ℂ] B)
(sk₁ sk₂ : ℝ)
:
Equations
- f.toSubsetQuantumSet sk₁ sk₂ = (QuantumSet.toSubset_algEquiv sk₂).toLinearMap ∘ₗ f ∘ₗ (QuantumSet.toSubset_algEquiv sk₁).symm.toLinearMap
Instances For
@[reducible, inline]
abbrev
LinearMap.ofSubsetQuantumSet
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
(sk₁ sk₂ : ℝ)
(f : QuantumSet.subset sk₁ A →ₗ[ℂ] QuantumSet.subset sk₂ B)
:
Equations
- LinearMap.ofSubsetQuantumSet sk₁ sk₂ f = (QuantumSet.toSubset_algEquiv sk₂).symm.toLinearMap ∘ₗ f ∘ₗ (QuantumSet.toSubset_algEquiv sk₁).toLinearMap
Instances For
theorem
QuantumSet.toSubset_algEquiv_adjoint
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
(sk₁ : ℝ)
:
LinearMap.adjoint (toSubset_algEquiv sk₁).toLinearMap = (modAut (sk₁ + -k A)).toLinearMap ∘ₗ (toSubset_algEquiv sk₁).symm.toLinearMap
theorem
QuantumSet.toSubset_algEquiv_symm_adjoint
{A : Type u_1}
[ha : starAlgebra A]
[hA : QuantumSet A]
(sk₁ : ℝ)
:
LinearMap.adjoint (toSubset_algEquiv sk₁).symm.toLinearMap = (toSubset_algEquiv sk₁).toLinearMap ∘ₗ (modAut (-sk₁ + k A)).toLinearMap
theorem
LinearMap.toSubsetQuantumSet_apply
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
(f : A →ₗ[ℂ] B)
(sk₁ sk₂ : ℝ)
(x : QuantumSet.subset sk₁ A)
:
(f.toSubsetQuantumSet sk₁ sk₂) x = (QuantumSet.toSubset_equiv sk₂) (f ((QuantumSet.toSubset_equiv sk₁).symm x))
theorem
LinearMap.toSubsetQuantumSet_adjoint_apply
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(f : A →ₗ[ℂ] B)
(sk₁ sk₂ : ℝ)
:
adjoint (f.toSubsetQuantumSet sk₁ sk₂) = ((modAut (-sk₁ + k A)).toLinearMap ∘ₗ adjoint f ∘ₗ (modAut (sk₂ + -k B)).toLinearMap).toSubsetQuantumSet sk₂ sk₁
theorem
LinearMap.ofSubsetQuantumSet_adjoint_apply
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(sk₁ sk₂ : ℝ)
(f : QuantumSet.subset sk₁ A →ₗ[ℂ] QuantumSet.subset sk₂ B)
:
adjoint (ofSubsetQuantumSet sk₁ sk₂ f) = (modAut (sk₁ + -k A)).toLinearMap ∘ₗ ofSubsetQuantumSet sk₂ sk₁ (adjoint f) ∘ₗ (modAut (-sk₂ + k B)).toLinearMap
theorem
rankOne_toSubsetQuantumSet
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(sk₁ sk₂ : ℝ)
(a : B)
(b : A)
:
(↑(((rankOne ℂ) a) b)).toSubsetQuantumSet sk₁ sk₂ = ↑(((rankOne ℂ) ((QuantumSet.toSubset_equiv sk₂) a)) ((QuantumSet.toSubset_equiv sk₁) ((modAut (-sk₁ + k A)) b)))
theorem
rankOne_ofSubsetQuantumSet
{A : Type u_1}
[ha : starAlgebra A]
{B : Type u_2}
[starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(sk₁ sk₂ : ℝ)
(a : QuantumSet.subset sk₂ B)
(b : QuantumSet.subset sk₁ A)
:
LinearMap.ofSubsetQuantumSet sk₁ sk₂ ↑(((rankOne ℂ) a) b) = ↑(((rankOne ℂ) ((QuantumSet.toSubset_equiv sk₂).symm a))
((modAut (sk₁ + -k A)) ((QuantumSet.toSubset_equiv sk₁).symm b)))
@[simp]
@[simp]
noncomputable def
QuantumSet.subset_tensor_algEquiv
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
(r : ℝ)
:
Equations
Instances For
theorem
QuantumSet.subset_tensor_algEquiv_tmul
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
(r : ℝ)
(x : subset r A)
(y : subset r B)
:
(subset_tensor_algEquiv r) (x ⊗ₜ[ℂ] y) = (toSubset_algEquiv r) ((toSubset_algEquiv r).symm x ⊗ₜ[ℂ] (toSubset_algEquiv r).symm y)
theorem
QuantumSet.subset_tensor_algEquiv_symm_tmul
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
(r : ℝ)
(a : A)
(b : B)
:
(subset_tensor_algEquiv r).symm ((toSubset_algEquiv r) (a ⊗ₜ[ℂ] b)) = (toSubset_algEquiv r) ((toSubset_algEquiv r) a ⊗ₜ[ℂ] (toSubset_algEquiv r) b)
theorem
QuantumSet.subset_tensor_algEquiv_adjoint
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
[h : Fact (k A = k B)]
(r : ℝ)
:
theorem
schurMul_toSubsetQuantumSet
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
{f : A →ₗ[ℂ] B}
(r₁ r₂ : ℝ)
:
theorem
LinearMap.toSubsetQuantumSet_inj
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
{f g : A →ₗ[ℂ] B}
(r₁ r₂ : ℝ)
:
theorem
LinearMap.toSubsetQuantumSet_isReal_iff
{A : Type u_2}
{B : Type u_3}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
{f : A →ₗ[ℂ] B}
(r₁ r₂ : ℝ)
:
theorem
QuantumSet.toSubset_onb
{A : Type u_2}
[starAlgebra A]
[hA : QuantumSet A]
(r : ℝ)
(i : n A)
:
theorem
QuantumSet.innerOne_map_one_toSubset_eq
{A : Type u_3}
{B : Type u_4}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
(r₁ r₂ : ℝ)
{f : A →ₗ[ℂ] B}
:
Equations
- instPartialOrderSubset r = hA
instance
instNonUnitalNonAssocSemiringSubset
{A : Type u_3}
[hA : NonUnitalNonAssocSemiring A]
(r : ℝ)
:
Equations
Equations
instance
instStarRingSubset_1
{A : Type u_3}
[NonUnitalNonAssocSemiring A]
[hA : StarRing A]
(r : ℝ)
:
StarRing (QuantumSet.subset r A)
Equations
- instStarRingSubset_1 r = hA
instance
instStarOrderedRingSubset
{A : Type u_3}
[NonUnitalSemiring A]
[PartialOrder A]
[StarRing A]
[hA : StarOrderedRing A]
(r : ℝ)
:
instance
instNontrivialSubset
{A : Type u_3}
[hA : Nontrivial A]
(r : ℝ)
:
Nontrivial (QuantumSet.subset r A)
theorem
LinearMap.toSubsetQuantumSet_eq_iff
{A : Type u_3}
{B : Type u_4}
[ha : starAlgebra A]
[starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(sk₁ sk₂ : ℝ)
(f : A →ₗ[ℂ] B)
(g : QuantumSet.subset sk₁ A →ₗ[ℂ] QuantumSet.subset sk₂ B)
: