Documentation

Monlib.LinearAlgebra.QuantumSet.Subset

def QuantumSet.toSubset (_k : ) (A : Type u_1) :
Type u_1
Equations
Instances For
    @[reducible, inline]
    abbrev QuantumSet.subset (k : ) (A : Type u_1) :
    Type u_1
    Equations
    Instances For
      instance instCoeFunSubset (k : ) (A : Type u_1) :
      CoeFun (QuantumSet.subset k A) fun (x : QuantumSet.subset k A) => A
      Equations
      instance instInhabitedSubset {new_k : } (A : Type u_1) [h : Inhabited A] :
      Equations
      instance instRingSubset {new_k : } {A : Type u_1} [h : Ring A] :
      Equations
      • instRingSubset = h
      instance instAlgebraComplexSubset {new_k : } {A : Type u_1} [Ring A] [h : Algebra A] :
      Equations
      • instAlgebraComplexSubset = h
      instance instStarSubset {new_k : } {A : Type u_1} [h : Star A] :
      Equations
      • instStarSubset = h
      instance instSMulComplexSubset {new_k : } {A : Type u_1} [h : SMul A] :
      Equations
      • instSMulComplexSubset = h
      instance instStarRingSubset {new_k : } {A : Type u_1} [Ring A] [h : StarRing A] :
      Equations
      • instStarRingSubset = h
      instance instStarModuleComplexSubset {new_k : } {A : Type u_1} [Star A] [SMul A] [h : StarModule A] :
      Equations
      • = h
      Equations
      Instances For
        theorem QuantumSet.subsetStarAlgebra_modAut_apply {new_k : } {A : Type u_1} [ha : starAlgebra A] (r : ) (x : QuantumSet.subset new_k A) :
        theorem QuantumSet.subsetStarAlgebra_modAut_apply' {new_k : } {A : Type u_1} [ha : starAlgebra A] (r : ) (x : A) :
        theorem QuantumSet.subsetStarAlgebra_modAut_apply'' {new_k : } {A : Type u_1} [ha : starAlgebra A] (r : ) (x : QuantumSet.subset new_k A) :
        (QuantumSet.toSubset_equiv new_k).symm ((modAut r) x) = (modAut r) ((QuantumSet.toSubset_equiv new_k).symm x)
        noncomputable def QuantumSet.subset_normedAddCommGroup {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] (new_k : ) :
        Equations
        Instances For
          noncomputable def QuantumSet.subset_innerProductSpace {A : Type u_1} [ha : starAlgebra A] (hA : QuantumSet A) (new_k : ) :
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable instance QuantumSet.subset_innerProductAlgebra {A : Type u_1} [ha : starAlgebra A] (hA : QuantumSet A) (new_k : ) :
            Equations
            theorem QuantumSet.subset_inner_eq {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] (new_k : ) (x : QuantumSet.subset new_k A) (y : QuantumSet.subset new_k A) :
            inner x y = inner ((QuantumSet.toSubset_equiv new_k).symm x) ((modAut (new_k + -k A)) ((QuantumSet.toSubset_equiv new_k).symm y))
            theorem QuantumSet.inner_eq_subset_inner {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] (new_k : ) (x : A) (y : A) :
            inner x y = inner ((QuantumSet.toSubset_equiv new_k) x) ((QuantumSet.toSubset_equiv new_k) ((modAut (k A + -new_k)) y))
            noncomputable instance QuantumSet.instSubset {A : Type u_1} [ha : starAlgebra A] (hA : QuantumSet A) (new_k : ) :
            Equations
            • One or more equations did not get rendered due to their size.
            @[reducible, inline]
            abbrev LinearMap.toSubsetQuantumSet {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [starAlgebra B] [QuantumSet A] [QuantumSet B] (f : A →ₗ[] B) (sk₁ : ) (sk₂ : ) :
            Equations
            Instances For
              @[reducible, inline]
              abbrev LinearMap.ofSubsetQuantumSet {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [starAlgebra B] [QuantumSet A] [QuantumSet B] (sk₁ : ) (sk₂ : ) (f : QuantumSet.subset sk₁ A →ₗ[] QuantumSet.subset sk₂ B) :
              Equations
              Instances For
                theorem QuantumSet.toSubset_algEquiv_adjoint {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] (sk₁ : ) :
                LinearMap.adjoint (QuantumSet.toSubset_algEquiv sk₁).toLinearMap = (modAut (sk₁ + -k A)).toLinearMap ∘ₗ (QuantumSet.toSubset_algEquiv sk₁).symm.toLinearMap
                theorem QuantumSet.toSubset_algEquiv_symm_adjoint {A : Type u_1} [ha : starAlgebra A] [hA : QuantumSet A] (sk₁ : ) :
                LinearMap.adjoint (QuantumSet.toSubset_algEquiv sk₁).symm.toLinearMap = (QuantumSet.toSubset_algEquiv sk₁).toLinearMap ∘ₗ (modAut (-sk₁ + k A)).toLinearMap
                theorem LinearMap.toSubsetQuantumSet_apply {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [starAlgebra B] [QuantumSet A] [QuantumSet B] (f : A →ₗ[] B) (sk₁ : ) (sk₂ : ) (x : QuantumSet.subset sk₁ A) :
                (f.toSubsetQuantumSet sk₁ sk₂) x = (QuantumSet.toSubset_equiv sk₂) (f ((QuantumSet.toSubset_equiv sk₁).symm x))
                theorem LinearMap.toSubsetQuantumSet_adjoint_apply {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (f : A →ₗ[] B) (sk₁ : ) (sk₂ : ) :
                LinearMap.adjoint (f.toSubsetQuantumSet sk₁ sk₂) = ((modAut (-sk₁ + k A)).toLinearMap ∘ₗ LinearMap.adjoint f ∘ₗ (modAut (sk₂ + -k B)).toLinearMap).toSubsetQuantumSet sk₂ sk₁
                theorem LinearMap.ofSubsetQuantumSet_adjoint_apply {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (sk₁ : ) (sk₂ : ) (f : QuantumSet.subset sk₁ A →ₗ[] QuantumSet.subset sk₂ B) :
                LinearMap.adjoint (LinearMap.ofSubsetQuantumSet sk₁ sk₂ f) = (modAut (sk₁ + -k A)).toLinearMap ∘ₗ LinearMap.ofSubsetQuantumSet sk₂ sk₁ (LinearMap.adjoint f) ∘ₗ (modAut (-sk₂ + k B)).toLinearMap
                theorem rankOne_toSubsetQuantumSet {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (sk₁ : ) (sk₂ : ) (a : B) (b : A) :
                (↑(((rankOne ) a) b)).toSubsetQuantumSet sk₁ sk₂ = (((rankOne ) ((QuantumSet.toSubset_equiv sk₂) a)) ((QuantumSet.toSubset_equiv sk₁) ((modAut (-sk₁ + k A)) b)))
                theorem rankOne_ofSubsetQuantumSet {A : Type u_1} [ha : starAlgebra A] {B : Type u_2} [starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (sk₁ : ) (sk₂ : ) (a : QuantumSet.subset sk₂ B) (b : QuantumSet.subset sk₁ A) :
                LinearMap.ofSubsetQuantumSet sk₁ sk₂ (((rankOne ) a) b) = (((rankOne ) ((QuantumSet.toSubset_equiv sk₂).symm a)) ((modAut (sk₁ + -k A)) ((QuantumSet.toSubset_equiv sk₁).symm b)))
                @[simp]
                theorem QuantumSet.subset_k {A : Type u_2} [starAlgebra A] [h : QuantumSet A] (r : ) :
                @[simp]
                theorem QuantumSet.subset_n {A : Type u_2} [starAlgebra A] [h : QuantumSet A] (r : ) :
                theorem QuantumSet.subset_tensor_algEquiv_adjoint {A : Type u_2} {B : Type u_3} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] [h : Fact (k A = k B)] (r : ) :
                LinearMap.adjoint (QuantumSet.subset_tensor_algEquiv r).toLinearMap = (QuantumSet.subset_tensor_algEquiv r).symm.toLinearMap
                theorem QuantumSet.comul_subset_eq {A : Type u_2} [starAlgebra A] [QuantumSet A] (r : ) :
                Coalgebra.comul = TensorProduct.map (QuantumSet.toSubset_algEquiv r).toLinearMap (QuantumSet.toSubset_algEquiv r).toLinearMap ∘ₗ Coalgebra.comul ∘ₗ (QuantumSet.toSubset_algEquiv r).symm.toLinearMap
                theorem schurMul_toSubsetQuantumSet {A : Type u_2} {B : Type u_3} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] {f : A →ₗ[] B} (r₁ : ) (r₂ : ) :
                f.toSubsetQuantumSet r₁ r₂ •ₛ f.toSubsetQuantumSet r₁ r₂ = (f •ₛ f).toSubsetQuantumSet r₁ r₂
                theorem LinearMap.toSubsetQuantumSet_inj {A : Type u_2} {B : Type u_3} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] {f : A →ₗ[] B} {g : A →ₗ[] B} (r₁ : ) (r₂ : ) :
                f.toSubsetQuantumSet r₁ r₂ = g.toSubsetQuantumSet r₁ r₂ f = g
                theorem LinearMap.toSubsetQuantumSet_isReal_iff {A : Type u_2} {B : Type u_3} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] {f : A →ₗ[] B} (r₁ : ) (r₂ : ) :
                LinearMap.IsReal (f.toSubsetQuantumSet r₁ r₂) LinearMap.IsReal f
                theorem QuantumSet.toSubset_onb {A : Type u_2} [starAlgebra A] [hA : QuantumSet A] (r : ) (i : n A) :
                onb i = (QuantumSet.toSubset_algEquiv r) ((modAut (k A / 2 + -(r / 2))) (onb i))
                theorem QuantumSet.comul_of_subset {A : Type u_2} [starAlgebra A] [hA : QuantumSet A] (r : ) :
                Coalgebra.comul = TensorProduct.map (QuantumSet.toSubset_algEquiv r).symm.toLinearMap (QuantumSet.toSubset_algEquiv r).symm.toLinearMap ∘ₗ Coalgebra.comul ∘ₗ (QuantumSet.toSubset_algEquiv r).toLinearMap
                theorem QuantumSet.innerOne_map_one_toSubset_eq {A : Type u_3} {B : Type u_4} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] (r₁ : ) (r₂ : ) {f : A →ₗ[] B} :
                inner 1 (f 1) = inner 1 ((f.toSubsetQuantumSet r₁ r₂) 1)
                instance instNontrivialSubset {A : Type u_3} [hA : Nontrivial A] (r : ) :
                Equations
                • = hA
                theorem LinearMap.toSubsetQuantumSet_eq_iff {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] (sk₁ : ) (sk₂ : ) (f : A →ₗ[] B) (g : QuantumSet.subset sk₁ A →ₗ[] QuantumSet.subset sk₂ B) :
                f.toSubsetQuantumSet sk₁ sk₂ = g f = LinearMap.ofSubsetQuantumSet sk₁ sk₂ g