noncomputable def
symmMap
(R : Type u_1)
[RCLike R]
(M₁ : Type u_2)
(M₂ : Type u_3)
[NormedAddCommGroup M₁]
[NormedAddCommGroup M₂]
[InnerProductSpace R M₁]
[InnerProductSpace R M₂]
[StarAddMonoid M₁]
[StarAddMonoid M₂]
[StarModule R M₁]
[StarModule R M₂]
[FiniteDimensional R M₁]
[FiniteDimensional R M₂]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
symmMap_apply
(R : Type u_1)
[RCLike R]
(M₁ : Type u_2)
(M₂ : Type u_3)
[NormedAddCommGroup M₁]
[NormedAddCommGroup M₂]
[InnerProductSpace R M₁]
[InnerProductSpace R M₂]
[StarAddMonoid M₁]
[StarAddMonoid M₂]
[StarModule R M₁]
[StarModule R M₂]
[FiniteDimensional R M₁]
[FiniteDimensional R M₂]
(f : M₁ →ₗ[R] M₂)
:
@[simp]
theorem
symmMap_symm_apply
(R : Type u_1)
[RCLike R]
(M₁ : Type u_2)
(M₂ : Type u_3)
[NormedAddCommGroup M₁]
[NormedAddCommGroup M₂]
[InnerProductSpace R M₁]
[InnerProductSpace R M₂]
[StarAddMonoid M₁]
[StarAddMonoid M₂]
[StarModule R M₁]
[StarModule R M₂]
[FiniteDimensional R M₁]
[FiniteDimensional R M₂]
(f : M₂ →ₗ[R] M₁)
:
theorem
symmMap_real
{R : Type u_1}
[RCLike R]
{M : Type u_2}
[NormedAddCommGroup M]
[InnerProductSpace R M]
[StarAddMonoid M]
[StarModule R M]
[FiniteDimensional R M]
:
theorem
symmMap_rankOne_apply
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(a : A)
(b : B)
:
theorem
symmMap_symm_rankOne_apply
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(a : A)
(b : B)
:
theorem
symmMap_eq
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(f : A →ₗ[ℂ] B)
:
(symmMap ℂ A B) f = (modAut (-k A)).toLinearMap ∘ₗ
↑(TensorProduct.rid ℂ A) ∘ₗ
LinearMap.lTensor A (Coalgebra.counit ∘ₗ LinearMap.mul' ℂ B) ∘ₗ
↑(TensorProduct.assoc ℂ A B B) ∘ₗ
LinearMap.rTensor B (LinearMap.lTensor A f) ∘ₗ
LinearMap.rTensor B (Coalgebra.comul ∘ₗ Algebra.linearMap ℂ A) ∘ₗ
↑(TensorProduct.lid ℂ B).symm ∘ₗ (modAut (k B)).toLinearMap
theorem
symmMap_symm_eq
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(f : A →ₗ[ℂ] B)
:
(symmMap ℂ B A).symm f = (modAut (k A)).toLinearMap ∘ₗ
↑(TensorProduct.lid ℂ A) ∘ₗ
LinearMap.rTensor A (Coalgebra.counit ∘ₗ LinearMap.mul' ℂ B) ∘ₗ
LinearMap.rTensor A (LinearMap.lTensor B f) ∘ₗ
↑(TensorProduct.assoc ℂ B A A).symm ∘ₗ
LinearMap.lTensor B (Coalgebra.comul ∘ₗ Algebra.linearMap ℂ A) ∘ₗ
↑(TensorProduct.rid ℂ B).symm ∘ₗ (modAut (-k B)).toLinearMap
theorem
counit_map_mul_eq_counit_mul_modAut_conj_symmMap
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(f : A →ₗ[ℂ] B)
(x : A)
(y : B)
:
theorem
LinearMap.adjoint_eq_iff
{𝕜 : Type u_3}
{E : Type u_4}
{F : Type u_5}
[RCLike 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace 𝕜 E]
[InnerProductSpace 𝕜 F]
[FiniteDimensional 𝕜 E]
[FiniteDimensional 𝕜 F]
(A : E →ₗ[𝕜] F)
(B : F →ₗ[𝕜] E)
:
theorem
symmMap_eq_conj_modAut_tfae
{B : Type u_2}
[hb : starAlgebra B]
[hB : QuantumSet B]
(f : B →ₗ[ℂ] B)
:
theorem
commute_real_real
{R : Type u_3}
{A : Type u_4}
[Semiring R]
[StarRing R]
[AddCommMonoid A]
[Module R A]
[StarAddMonoid A]
[StarModule R A]
(f : A →ₗ[R] A)
(g : A →ₗ[R] A)
:
theorem
linearMap_commute_modAut_pos_neg
{B : Type u_2}
[hb : starAlgebra B]
[hB : QuantumSet B]
(r : ℝ)
(x : B →ₗ[ℂ] B)
:
theorem
symmMap_apply_eq_symmMap_symm_apply_iff
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(f : A →ₗ[ℂ] B)
:
theorem
Psi.real_apply
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(r₁ : ℝ)
(r₂ : ℝ)
(f : A →ₗ[ℂ] B)
:
(QuantumSet.Psi r₁ r₂) f.real = (TensorProduct.map (modAut (2 * r₁)).toLinearMap (AlgEquiv.op (modAut (1 - 2 * (r₂ - k A)))).toLinearMap)
(star ((QuantumSet.Psi r₁ r₂) f))
theorem
Psi.adjoint_apply
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(r₁ : ℝ)
(r₂ : ℝ)
(f : A →ₗ[ℂ] B)
:
(QuantumSet.Psi r₁ r₂) (LinearMap.adjoint f) = (TensorProduct.map (modAut (r₁ - r₂)).toLinearMap (AlgEquiv.op (modAut (r₁ - r₂))).toLinearMap)
((tenSwap ℂ) (star ((QuantumSet.Psi r₁ r₂) f)))
theorem
Psi.symmMap_apply
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(r₁ : ℝ)
(r₂ : ℝ)
(f : A →ₗ[ℂ] B)
:
theorem
Psi.symmMap_symm_apply
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(r₁ : ℝ)
(r₂ : ℝ)
(f : A →ₗ[ℂ] B)
:
theorem
symmMap_apply_adjoint
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
(x : A →ₗ[ℂ] B)
:
theorem
symmMap_comp
{A : Type u_1}
{B : Type u_2}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
{C : Type u_3}
[starAlgebra C]
[QuantumSet C]
(x : A →ₗ[ℂ] B)
(y : C →ₗ[ℂ] A)
: