Matrix algebras are star ordered rings #
This file contains the instance of star_ordered_ring
for matrix n n ℂ
.
Main definitions #
matrix.partial_order
: The partial order onmatrix n n ℂ
induced by the positive semidefinite matrices.matrix.pos_semidef.add_submonoid
: The additive submonoid of positive semidefinite matrices.matrix.star_ordered_ring
: The instance ofstar_ordered_ring
formatrix n n ℂ
.
You need to open_locale matrix_order
to use these instances.
theorem
Matrix.NegSemidef.nonpos_eigenvalues
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.NegSemidef)
(i : n)
:
theorem
Matrix.NegDef.neg_eigenvalues
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.NegDef)
(i : n)
:
theorem
Matrix.IsHermitian.eigenvalues_eq_zero_iff
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.IsHermitian)
:
theorem
Matrix.posSemidef_and_negSemidef_iff_eq_zero
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
:
theorem
Matrix.diagonal_posSemidef_iff
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
(x : n → 𝕜)
:
theorem
Matrix.diagonal_negSemidef_iff
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
(x : n → 𝕜)
:
theorem
Matrix.posSemidef_iff_of_isHermitian
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.IsHermitian)
:
theorem
Matrix.posSemidef_iff_isHermitian_and_nonneg_spectrum
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
:
theorem
Matrix.posDef_iff_of_isHermitian
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.IsHermitian)
:
theorem
Matrix.posSemidef_iff_commute
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x y : Matrix n n 𝕜}
(hx : x.PosSemidef)
(hy : y.PosSemidef)
:
theorem
Matrix.innerAut_negSemidef_iff
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
(U : ↥(unitaryGroup n 𝕜))
{a : Matrix n n 𝕜}
:
theorem
Matrix.innerAut_negDef_iff
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
(U : ↥(unitaryGroup n 𝕜))
{x : Matrix n n 𝕜}
:
$f_U(x)$ is negative definite if and only if $x$ is negative definite
theorem
Matrix.negSemidef_iff_of_isHermitian
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.IsHermitian)
:
theorem
Matrix.negDef_iff_of_isHermitian
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.IsHermitian)
:
theorem
Matrix.posDef_of_posSemidef
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.PosSemidef)
:
theorem
Matrix.negDef_of_negSemidef
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.NegSemidef)
:
@[reducible]
Equations
Instances For
@[reducible]
noncomputable def
Matrix.starOrderedRing
{n : Type u_1}
[Fintype n]
[DecidableEq n]
:
StarOrderedRing (Matrix n n ℂ)
Equations
- ⋯ = ⋯
Instances For
@[reducible]
noncomputable def
Matrix.PiStarOrderedRing
{ι : Type u_1}
[Fintype ι]
[DecidableEq ι]
{n : ι → Type u_2}
[(i : ι) → Fintype (n i)]
[(i : ι) → DecidableEq (n i)]
:
StarOrderedRing (PiMat ℂ ι n)
Equations
- ⋯ = ⋯
Instances For
theorem
Matrix.negSemidef_iff_nonpos
{n : Type u_1}
[Fintype n]
[DecidableEq n]
(x : Matrix n n ℂ)
:
theorem
Matrix.PosSemidef.conj_by_isHermitian_posSemidef
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x y : Matrix n n 𝕜}
(hx : x.PosSemidef)
(hy : y.IsHermitian)
:
(y * x * y).PosSemidef
theorem
Matrix.IsHermitian.conj_by_isHermitian_posSemidef
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x y : Matrix n n 𝕜}
(hx : x.IsHermitian)
(hy : y.PosSemidef)
:
(x * y * x).PosSemidef
theorem
Matrix.isHermitian_mul_iff
{α : Type u_1}
{n : Type u_4}
[NonUnitalSemiring α]
[StarRing α]
[Fintype n]
{A B : Matrix n n α}
(hA : A.IsHermitian)
(hB : B.IsHermitian)
:
Alias of Matrix.commute_iff
.
theorem
Matrix.innerAut.map_pow
{n : Type u_1}
[Fintype n]
[DecidableEq n]
{𝕜 : Type u_2}
[RCLike 𝕜]
(U : ↥(unitaryGroup n 𝕜))
(x : Matrix n n 𝕜)
(n✝ : ℕ)
: