Matrix algebras are star ordered rings #
This file contains the instance of star_ordered_ring
for matrix n n ℂ
.
Main definitions #
matrix.partial_order
: The partial order onmatrix n n ℂ
induced by the positive semidefinite matrices.matrix.pos_semidef.add_submonoid
: The additive submonoid of positive semidefinite matrices.matrix.star_ordered_ring
: The instance ofstar_ordered_ring
formatrix n n ℂ
.
You need to open_locale matrix_order
to use these instances.
theorem
Matrix.NegSemidef.nonpos_eigenvalues
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.NegSemidef)
(i : n)
:
⋯.eigenvalues i ≤ 0
theorem
Matrix.NegDef.neg_eigenvalues
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.NegDef)
(i : n)
:
⋯.eigenvalues i < 0
theorem
Matrix.diagonal_posSemidef_iff
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
(x : n → 𝕜)
:
(Matrix.diagonal x).PosSemidef ↔ 0 ≤ x
theorem
Matrix.diagonal_negSemidef_iff
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
(x : n → 𝕜)
:
(Matrix.diagonal x).NegSemidef ↔ x ≤ 0
theorem
Matrix.diagonal_posDef_iff
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
(x : n → 𝕜)
:
(Matrix.diagonal x).PosDef ↔ ∀ (i : n), 0 < x i
theorem
Matrix.diagonal_negDef_iff
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
(x : n → 𝕜)
:
(Matrix.diagonal x).NegDef ↔ ∀ (i : n), x i < 0
theorem
Matrix.posSemidef_iff_of_isHermitian
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.IsHermitian)
:
theorem
Matrix.posDef_iff_of_isHermitian
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.IsHermitian)
:
theorem
Matrix.innerAut_negSemidef_iff
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
(U : ↥(Matrix.unitaryGroup n 𝕜))
{a : Matrix n n 𝕜}
:
((Matrix.innerAut U) a).NegSemidef ↔ a.NegSemidef
theorem
Matrix.innerAut_negDef_iff
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
(U : ↥(Matrix.unitaryGroup n 𝕜))
{x : Matrix n n 𝕜}
:
((Matrix.innerAut U) x).NegDef ↔ x.NegDef
$f_U(x)$ is negative definite if and only if $x$ is negative definite
theorem
Matrix.negSemidef_iff_of_isHermitian
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.IsHermitian)
:
theorem
Matrix.negDef_iff_of_isHermitian
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.IsHermitian)
:
theorem
Matrix.posDef_of_posSemidef
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.PosSemidef)
:
theorem
Matrix.negDef_of_negSemidef
{𝕜 : Type u_1}
{n : Type u_2}
[RCLike 𝕜]
[Fintype n]
[DecidableEq n]
{x : Matrix n n 𝕜}
(hx : x.NegSemidef)
:
@[reducible]
noncomputable def
Matrix.starOrderedRing
{n : Type u_1}
[Fintype n]
[DecidableEq n]
:
StarOrderedRing (Matrix n n ℂ)
Equations
- ⋯ = ⋯
Instances For
@[reducible]
noncomputable def
Matrix.PiStarOrderedRing
{ι : Type u_1}
[Fintype ι]
[DecidableEq ι]
{n : ι → Type u_2}
[(i : ι) → Fintype (n i)]
[(i : ι) → DecidableEq (n i)]
:
StarOrderedRing (PiMat ℂ ι n)
Equations
- ⋯ = ⋯
Instances For
theorem
Matrix.negSemidef_iff_nonpos
{n : Type u_1}
[Fintype n]
[DecidableEq n]
(x : Matrix n n ℂ)
:
theorem
Matrix.isHermitian_mul_iff
{α : Type u_1}
{n : Type u_4}
[NonUnitalSemiring α]
[StarRing α]
[Fintype n]
{A : Matrix n n α}
{B : Matrix n n α}
(hA : A.IsHermitian)
(hB : B.IsHermitian)
:
Alias of Matrix.commute_iff
.
theorem
Matrix.innerAut.map_pow
{n : Type u_1}
[Fintype n✝]
[DecidableEq n✝]
{𝕜 : Type u_2}
[RCLike 𝕜]
(U : ↥(Matrix.unitaryGroup n✝ 𝕜))
(x : Matrix n✝ n✝ 𝕜)
(n : ℕ)
:
(Matrix.innerAut U) x ^ n = (Matrix.innerAut U) (x ^ n)