Documentation

Monlib.QuantumGraph.Grad

noncomputable def QuantumGraph.Grad {B : Type u_1} [starAlgebra B] [QuantumSet B] :
Equations
Instances For
    theorem QuantumGraph.Grad_apply {B : Type u_1} [starAlgebra B] [QuantumSet B] (A : B →ₗ[] B) :
    QuantumGraph.Grad A = (LinearMap.rTensor B (LinearMap.adjoint A) - LinearMap.lTensor B A) ∘ₗ Coalgebra.comul
    theorem QuantumGraph.Grad_eq {B : Type u_1} [starAlgebra B] [QuantumSet B] (gns : k B = 0) (A : B →ₗ[] B) :
    QuantumGraph.Grad A = (PhiMap A.real) ∘ₗ LinearMap.rTensor B (Algebra.linearMap B) ∘ₗ (TensorProduct.lid B).symm - (PhiMap A) ∘ₗ LinearMap.lTensor B (Algebra.linearMap B) ∘ₗ (TensorProduct.rid B).symm
    theorem QuantumGraph.Grad_apply' {B : Type u_1} [starAlgebra B] [QuantumSet B] (gns : k B = 0) (A : B →ₗ[] B) (x : B) :
    (QuantumGraph.Grad A) x = (PhiMap A.real) (1 ⊗ₜ[] x) - (PhiMap A) (x ⊗ₜ[] 1)
    theorem QuantumGraph.Real.range_grad_le_range_phiMap {B : Type u_1} [starAlgebra B] [QuantumSet B] (gns : k B = 0) {A : B →ₗ[] B} (hA : QuantumGraph.Real B A) :
    LinearMap.range (QuantumGraph.Grad A) LinearMap.range (PhiMap A)
    theorem Upsilon_symm_grad_apply_apply {B : Type u_1} [starAlgebra B] [QuantumSet B] (gns : k B = 0) (A : B →ₗ[] B) (x : B) :
    Upsilon.symm ((QuantumGraph.Grad A) x) = rmul x ∘ₗ A.real - A ∘ₗ rmul x
    theorem QuantumGraph.grad_adjoint_comp_grad {B : Type u_1} [starAlgebra B] [QuantumSet B] (gns : k B = 0) (A : B →ₗ[] B) :
    LinearMap.adjoint (QuantumGraph.Grad A) ∘ₗ QuantumGraph.Grad A = QuantumGraph.outDegree (A •ₛ A.real) - A •ₛ A - LinearMap.adjoint (A •ₛ A) + QuantumGraph.inDegree (A.real •ₛ A)
    theorem Bimodule.lsmul_sub {R : Type u_2} {H₁ : Type u_3} {H₂ : Type u_4} [CommSemiring R] [Ring H₁] [Ring H₂] [Algebra R H₁] [Algebra R H₂] (x : H₁) (a : TensorProduct R H₁ H₂) (b : TensorProduct R H₁ H₂) :
    theorem Bimodule.sub_rsmul {R : Type u_2} {H₁ : Type u_3} {H₂ : Type u_4} [CommSemiring R] [Ring H₁] [Ring H₂] [Algebra R H₁] [Algebra R H₂] (x : H₂) (a : TensorProduct R H₁ H₂) (b : TensorProduct R H₁ H₂) :
    theorem QuantumGraph.apply_mul_of_isReal {B : Type u_1} [starAlgebra B] [QuantumSet B] (gns : k B = 0) {A : B →ₗ[] B} (hA : LinearMap.IsReal A) (x : B) (y : B) :
    (QuantumGraph.Grad A) (x * y) = Bimodule.rsmul ((QuantumGraph.Grad A) x) y + Bimodule.lsmul x ((QuantumGraph.Grad A) y)