Documentation

Monlib.QuantumGraph.Grad

noncomputable def QuantumGraph.Grad {B : Type u_1} [starAlgebra B] [QuantumSet B] :
Equations
Instances For
    theorem QuantumGraph.Grad_apply' {B : Type u_1} [starAlgebra B] [QuantumSet B] (gns : k B = 0) (A : B →ₗ[] B) (x : B) :
    (Grad A) x = (PhiMap A.real) (1 ⊗ₜ[] x) - (PhiMap A) (x ⊗ₜ[] 1)
    theorem Upsilon_symm_grad_apply_apply {B : Type u_1} [starAlgebra B] [QuantumSet B] (gns : k B = 0) (A : B →ₗ[] B) (x : B) :
    theorem Bimodule.lsmul_sub {R : Type u_2} {H₁ : Type u_3} {H₂ : Type u_4} [CommSemiring R] [Ring H₁] [Ring H₂] [Algebra R H₁] [Algebra R H₂] (x : H₁) (a b : TensorProduct R H₁ H₂) :
    lsmul x (a - b) = lsmul x a - lsmul x b
    theorem Bimodule.sub_rsmul {R : Type u_2} {H₁ : Type u_3} {H₂ : Type u_4} [CommSemiring R] [Ring H₁] [Ring H₂] [Algebra R H₁] [Algebra R H₂] (x : H₂) (a b : TensorProduct R H₁ H₂) :
    rsmul (a - b) x = rsmul a x - rsmul b x
    theorem QuantumGraph.apply_mul_of_isReal {B : Type u_1} [starAlgebra B] [QuantumSet B] (gns : k B = 0) {A : B →ₗ[] B} (hA : LinearMap.IsReal A) (x y : B) :
    (Grad A) (x * y) = Bimodule.rsmul ((Grad A) x) y + Bimodule.lsmul x ((Grad A) y)