Equations
- QuantumGraph.Grad = { toFun := fun (f : B →ₗ[ℂ] B) => (LinearMap.rTensor B (LinearMap.adjoint f) - LinearMap.lTensor B f) ∘ₗ Coalgebra.comul, map_zero' := ⋯, map_add' := ⋯ }
Instances For
theorem
QuantumGraph.Grad_apply
{B : Type u_1}
[starAlgebra B]
[QuantumSet B]
(A : B →ₗ[ℂ] B)
:
QuantumGraph.Grad A = (LinearMap.rTensor B (LinearMap.adjoint A) - LinearMap.lTensor B A) ∘ₗ Coalgebra.comul
theorem
QuantumGraph.Grad_eq
{B : Type u_1}
[starAlgebra B]
[QuantumSet B]
(gns : k B = 0)
(A : B →ₗ[ℂ] B)
:
QuantumGraph.Grad A = ↑(PhiMap A.real) ∘ₗ LinearMap.rTensor B (Algebra.linearMap ℂ B) ∘ₗ ↑(TensorProduct.lid ℂ B).symm - ↑(PhiMap A) ∘ₗ LinearMap.lTensor B (Algebra.linearMap ℂ B) ∘ₗ ↑(TensorProduct.rid ℂ B).symm
theorem
QuantumGraph.Real.range_grad_le_range_phiMap
{B : Type u_1}
[starAlgebra B]
[QuantumSet B]
(gns : k B = 0)
{A : B →ₗ[ℂ] B}
(hA : QuantumGraph.Real B A)
:
LinearMap.range (QuantumGraph.Grad A) ≤ LinearMap.range ↑(PhiMap A)
theorem
Upsilon_symm_grad_apply_apply
{B : Type u_1}
[starAlgebra B]
[QuantumSet B]
(gns : k B = 0)
(A : B →ₗ[ℂ] B)
(x : B)
:
theorem
QuantumGraph.grad_adjoint_comp_grad
{B : Type u_1}
[starAlgebra B]
[QuantumSet B]
(gns : k B = 0)
(A : B →ₗ[ℂ] B)
:
theorem
Bimodule.lsmul_sub
{R : Type u_2}
{H₁ : Type u_3}
{H₂ : Type u_4}
[CommSemiring R]
[Ring H₁]
[Ring H₂]
[Algebra R H₁]
[Algebra R H₂]
(x : H₁)
(a : TensorProduct R H₁ H₂)
(b : TensorProduct R H₁ H₂)
:
Bimodule.lsmul x (a - b) = Bimodule.lsmul x a - Bimodule.lsmul x b
theorem
Bimodule.sub_rsmul
{R : Type u_2}
{H₁ : Type u_3}
{H₂ : Type u_4}
[CommSemiring R]
[Ring H₁]
[Ring H₂]
[Algebra R H₁]
[Algebra R H₂]
(x : H₂)
(a : TensorProduct R H₁ H₂)
(b : TensorProduct R H₁ H₂)
:
Bimodule.rsmul (a - b) x = Bimodule.rsmul a x - Bimodule.rsmul b x
theorem
QuantumGraph.apply_mul_of_isReal
{B : Type u_1}
[starAlgebra B]
[QuantumSet B]
(gns : k B = 0)
{A : B →ₗ[ℂ] B}
(hA : LinearMap.IsReal A)
(x : B)
(y : B)
:
(QuantumGraph.Grad A) (x * y) = Bimodule.rsmul ((QuantumGraph.Grad A) x) y + Bimodule.lsmul x ((QuantumGraph.Grad A) y)