Documentation

Monlib.QuantumGraph.Degree

theorem schurProjection.innerOne_map_one_nonneg {A : Type u_1} {B : Type u_2} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] [PartialOrder A] [PartialOrder B] [StarOrderedRing A] [StarOrderedRing B] (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) (h₂ : ∀ ⦃a : B⦄, 0 a ∃ (b : B), a = star b * b) {f : A →ₗ[] B} (h : schurProjection f) :
0 inner 1 (f 1)
theorem QuantumGraph.Real.innerOne_map_one_nonneg {A : Type u_1} [starAlgebra A] [hA : QuantumSet A] [PartialOrder A] [StarOrderedRing A] (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) {f : A →ₗ[] A} (h : Real A f) :
0 inner 1 (f 1)
theorem QuantumGraph.Real.innerOne_map_one_eq_zero_iff_of_kms {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (h : Real A f) [kms : Fact (k A = -(1 / 2))] :
inner 1 (f 1) = 0 f = 0
theorem QuantumGraph.Real.innerOne_map_one_eq_zero_iff {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (h : Real A f) :
inner 1 (f 1) = 0 f = 0
theorem QuantumGraph.Real.innerOne_map_one_eq_norm_pow_four_iff_of_kms {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (h : Real A f) [kms : Fact (k A = -(1 / 2))] :
inner 1 (f 1) = 1 ^ 4 f = (((rankOne ) 1) 1)
theorem QuantumGraph.Real.innerOne_map_one_eq_norm_pow_four_iff {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (h : Real A f) :
inner 1 (f 1) = 1 ^ 4 f = (((rankOne ) 1) 1)
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem QuantumGraph.outDegree_apply_schurMul {A : Type u_1} [starAlgebra A] [QuantumSet A] (gns : k A = 0) (f₁ f₂ : A →ₗ[] A) :
      outDegree (f₁ •ₛ f₂) = (f₁ ∘ₗ (symmMap A A) f₂) •ₛ 1
      theorem QuantumGraph.inDegree_apply_schurMul {A : Type u_1} [starAlgebra A] [QuantumSet A] (gns : k A = 0) (f₁ f₂ : A →ₗ[] A) :
      def QuantumGraph.IsRegular {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (_h : QuantumGraph A f) (d : ) :
      Equations
      Instances For
        theorem QuantumGraph.degree_is_real_of_real {A : Type u_1} [starAlgebra A] [QuantumSet A] [Nontrivial A] {f : A →ₗ[] A} (h : Real A f) (d : ) (h2 : .IsRegular d) :
        d = d.re
        theorem PhiMap_apply_one_one {A : Type u_1} {B : Type u_2} [starAlgebra B] [starAlgebra A] [QuantumSet A] [QuantumSet B] :
        (PhiMap (((rankOne ) 1) 1)) = 1
        theorem QuantumGraph.Real.gns_le_one {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (hf : Real A f) (gns : k A = 0) :
        theorem QuantumGraph.Real.innerOne_map_one_le_norm_one_pow_four_of_gns {A : Type u_1} [starAlgebra A] [QuantumSet A] [Nontrivial A] [PartialOrder A] [StarOrderedRing A] (gns : k A = 0) (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) {f : A →ₗ[] A} (h : Real A f) :
        inner 1 (f 1) 1 ^ 4
        theorem QuantumGraph.zero_le_degree_le_norm_one_sq_of_gns {A : Type u_1} [starAlgebra A] [QuantumSet A] [Nontrivial A] [PartialOrder A] [StarOrderedRing A] (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) (gns : k A = 0) {f : A →ₗ[] A} (h : Real A f) (d : ) (h2 : .IsRegular d) :
        0 d d 1 ^ 2
        theorem StarOrderedRing.nonneg_iff_toQuantumSetSubset {A : Type u_1} [NonUnitalSemiring A] [StarRing A] [PartialOrder A] [StarOrderedRing A] (r : ) :
        (∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) ∀ ⦃a : QuantumSet.subset r A⦄, 0 a ∃ (b : QuantumSet.subset r A), a = star b * b
        theorem QuantumGraph.toSubset_isRegular_iff {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (r : ) (h : QuantumGraph A f) (d : ) :
        let h' := ; h.IsRegular d h'.IsRegular d
        theorem QuantumGraph.zero_le_degree_le_norm_one_sq {A : Type u_1} [starAlgebra A] [QuantumSet A] [Nontrivial A] [PartialOrder A] [StarOrderedRing A] (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) {f : A →ₗ[] A} (h : Real A f) (d : ) (h2 : .IsRegular d) :
        0 d d 1 ^ 2