Documentation

Monlib.QuantumGraph.Degree

theorem schurProjection.innerOne_map_one_nonneg {A : Type u_1} {B : Type u_2} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] [PartialOrder A] [PartialOrder B] [StarOrderedRing A] [StarOrderedRing B] (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) (h₂ : ∀ ⦃a : B⦄, 0 a ∃ (b : B), a = star b * b) {f : A →ₗ[] B} (h : schurProjection f) :
0 inner 1 (f 1)
theorem quantumGraph_iff {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} :
QuantumGraph A f f •ₛ f = f
theorem QuantumGraph.toSubset_iff {A : Type u_1} [starAlgebra A] [h : QuantumSet A] {f : A →ₗ[] A} (r : ) :
QuantumGraph (QuantumSet.subset r A) (f.toSubsetQuantumSet r r) QuantumGraph A f
theorem QuantumGraph.real_toSubset_iff {A : Type u_1} [starAlgebra A] [h : QuantumSet A] {f : A →ₗ[] A} (r : ) :
QuantumGraph.Real (QuantumSet.subset r A) (f.toSubsetQuantumSet r r) QuantumGraph.Real A f
theorem QuantumGraph.Real.innerOne_map_one_nonneg {A : Type u_1} [starAlgebra A] [hA : QuantumSet A] [PartialOrder A] [StarOrderedRing A] (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) {f : A →ₗ[] A} (h : QuantumGraph.Real A f) :
0 inner 1 (f 1)
theorem QuantumGraph.Real.innerOne_map_one_eq_zero_iff_of_kms {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (h : QuantumGraph.Real A f) [kms : Fact (k A = -(1 / 2))] :
inner 1 (f 1) = 0 f = 0
theorem QuantumGraph.Real.innerOne_map_one_eq_norm_pow_four_iff_of_kms {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (h : QuantumGraph.Real A f) [kms : Fact (k A = -(1 / 2))] :
inner 1 (f 1) = 1 ^ 4 f = (((rankOne ) 1) 1)
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem QuantumGraph.outDegree_apply {A : Type u_1} [starAlgebra A] [QuantumSet A] (f : A →ₗ[] A) :
    QuantumGraph.outDegree f = LinearMap.mul' A ∘ₗ LinearMap.rTensor A f ∘ₗ LinearMap.rTensor A (Algebra.linearMap A) ∘ₗ (TensorProduct.lid A).symm
    theorem QuantumGraph.outDegree_eq {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} :
    QuantumGraph.outDegree f = lmul (f 1)
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem QuantumGraph.inDegree_apply {A : Type u_1} [starAlgebra A] [QuantumSet A] (f : A →ₗ[] A) :
      QuantumGraph.inDegree f = LinearMap.mul' A ∘ₗ LinearMap.lTensor A (LinearMap.adjoint f) ∘ₗ LinearMap.lTensor A (Algebra.linearMap A) ∘ₗ (TensorProduct.rid A).symm
      theorem QuantumGraph.inDegree_eq {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} :
      QuantumGraph.inDegree f = rmul ((LinearMap.adjoint f) 1)
      theorem QuantumGraph.outDegree_real_eq {A : Type u_1} [starAlgebra A] [QuantumSet A] {x : A →ₗ[] A} :
      (QuantumGraph.outDegree x).real = QuantumGraph.inDegree ((symmMap A A) x)
      theorem QuantumGraph.inDegree_real_eq {A : Type u_1} [starAlgebra A] [QuantumSet A] {x : A →ₗ[] A} :
      (QuantumGraph.inDegree x).real = QuantumGraph.outDegree ((symmMap A A).symm x)
      theorem QuantumGraph.outDegree_eq' {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} :
      QuantumGraph.outDegree f = (TensorProduct.lid A) ∘ₗ LinearMap.rTensor A Coalgebra.counit ∘ₗ (PhiMap f) ∘ₗ LinearMap.rTensor A (Algebra.linearMap A) ∘ₗ (TensorProduct.lid A).symm
      theorem QuantumGraph.inDegree_eq' {A : Type u_1} [starAlgebra A] [QuantumSet A] (gns : k A = 0) {f : A →ₗ[] A} :
      QuantumGraph.inDegree f = (TensorProduct.rid A) ∘ₗ LinearMap.lTensor A Coalgebra.counit ∘ₗ (PhiMap f.real) ∘ₗ LinearMap.lTensor A (Algebra.linearMap A) ∘ₗ (TensorProduct.rid A).symm
      theorem QuantumGraph.outDegree_apply_schurMul {A : Type u_1} [starAlgebra A] [QuantumSet A] (gns : k A = 0) (f₁ : A →ₗ[] A) (f₂ : A →ₗ[] A) :
      QuantumGraph.outDegree (f₁ •ₛ f₂) = (f₁ ∘ₗ (symmMap A A) f₂) •ₛ 1
      theorem QuantumGraph.inDegree_apply_schurMul {A : Type u_1} [starAlgebra A] [QuantumSet A] (gns : k A = 0) (f₁ : A →ₗ[] A) (f₂ : A →ₗ[] A) :
      QuantumGraph.inDegree (f₁ •ₛ f₂) = 1 •ₛ LinearMap.adjoint f₂ ∘ₗ f₁.real
      def QuantumGraph.IsRegular {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (_h : QuantumGraph A f) (d : ) :
      Equations
      • _h.IsRegular d = (f 1 = d 1 (LinearMap.adjoint f) 1 = d 1)
      Instances For
        theorem QuantumGraph.degree_is_real_of_real {A : Type u_1} [starAlgebra A] [QuantumSet A] [Nontrivial A] {f : A →ₗ[] A} (h : QuantumGraph.Real A f) (d : ) (h2 : .IsRegular d) :
        d = d.re
        theorem PhiMap_apply_one_one {A : Type u_1} {B : Type u_2} [starAlgebra B] [starAlgebra A] [QuantumSet A] [QuantumSet B] :
        (PhiMap (((rankOne ) 1) 1)) = 1
        theorem ContinuousLinearMap.isPositive_iff_complex' {E' : Type u_1} [NormedAddCommGroup E'] [InnerProductSpace E'] [CompleteSpace E'] (T : E' →L[] E') :
        T.IsPositive ∀ (x : E'), 0 inner (T x) x
        theorem ContinuousLinearMap.isPositive_iff_complex'' {E' : Type u_1} [NormedAddCommGroup E'] [InnerProductSpace E'] [CompleteSpace E'] (T : E' →L[] E') :
        T.IsPositive ∀ (x : E'), 0 inner x (T x)
        theorem ContinuousLinearMap.le_iff_complex_inner_le {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [CompleteSpace E] {p : E →L[] E} {q : E →L[] E} :
        p q ∀ (x : E), inner x (p x) inner x (q x)
        theorem isOrthogonalProjection_le_one {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {p : E →L[] E} (hp : p.IsOrthogonalProjection) :
        p 1
        theorem QuantumGraph.Real.gns_le_one {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (hf : QuantumGraph.Real A f) (gns : k A = 0) :
        LinearMap.toContinuousLinearMap (PhiMap f) 1
        theorem QuantumGraph.Real.innerOne_map_one_le_norm_one_pow_four_of_gns {A : Type u_1} [starAlgebra A] [QuantumSet A] [Nontrivial A] [PartialOrder A] [StarOrderedRing A] (gns : k A = 0) (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) {f : A →ₗ[] A} (h : QuantumGraph.Real A f) :
        inner 1 (f 1) 1 ^ 4
        theorem QuantumGraph.zero_le_degree_le_norm_one_sq_of_gns {A : Type u_1} [starAlgebra A] [QuantumSet A] [Nontrivial A] [PartialOrder A] [StarOrderedRing A] (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) (gns : k A = 0) {f : A →ₗ[] A} (h : QuantumGraph.Real A f) (d : ) (h2 : .IsRegular d) :
        0 d d 1 ^ 2
        theorem StarOrderedRing.nonneg_iff_toQuantumSetSubset {A : Type u_1} [NonUnitalSemiring A] [StarRing A] [PartialOrder A] [StarOrderedRing A] (r : ) :
        (∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) ∀ ⦃a : QuantumSet.subset r A⦄, 0 a ∃ (b : QuantumSet.subset r A), a = star b * b
        theorem Coalgebra.comul_comp_mul_quantumSetSubset {A : Type u_1} [starAlgebra A] [QuantumSet A] (r : ) :
        Coalgebra.comul ∘ₗ LinearMap.mul' (QuantumSet.subset r A) = TensorProduct.map (QuantumSet.toSubset_algEquiv r).toLinearMap (QuantumSet.toSubset_algEquiv r).toLinearMap ∘ₗ (Coalgebra.comul ∘ₗ LinearMap.mul' A) ∘ₗ TensorProduct.map (QuantumSet.toSubset_algEquiv r).symm.toLinearMap (QuantumSet.toSubset_algEquiv r).symm.toLinearMap
        theorem QuantumGraph.toSubset_isRegular_iff {A : Type u_1} [starAlgebra A] [QuantumSet A] {f : A →ₗ[] A} (r : ) (h : QuantumGraph A f) (d : ) :
        let h' := ; h.IsRegular d h'.IsRegular d
        theorem QuantumGraph.zero_le_degree_le_norm_one_sq {A : Type u_1} [starAlgebra A] [QuantumSet A] [Nontrivial A] [PartialOrder A] [StarOrderedRing A] (h₁ : ∀ ⦃a : A⦄, 0 a ∃ (b : A), a = star b * b) {f : A →ₗ[] A} (h : QuantumGraph.Real A f) (d : ) (h2 : .IsRegular d) :
        0 d d 1 ^ 2