theorem
schurProjection.innerOne_map_one_nonneg
{A : Type u_1}
{B : Type u_2}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
[PartialOrder A]
[PartialOrder B]
[StarOrderedRing A]
[StarOrderedRing B]
(h₁ : ∀ ⦃a : A⦄, 0 ≤ a ↔ ∃ (b : A), a = star b * b)
(h₂ : ∀ ⦃a : B⦄, 0 ≤ a ↔ ∃ (b : B), a = star b * b)
{f : A →ₗ[ℂ] B}
(h : schurProjection f)
:
theorem
QuantumGraph.real_iff
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
:
QuantumGraph.Real A f ↔ f •ₛ f = f ∧ LinearMap.IsReal f
theorem
quantumGraph_iff
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
:
QuantumGraph A f ↔ f •ₛ f = f
theorem
QuantumGraph.toSubset_iff
{A : Type u_1}
[starAlgebra A]
[h : QuantumSet A]
{f : A →ₗ[ℂ] A}
(r : ℝ)
:
QuantumGraph (QuantumSet.subset r A) (f.toSubsetQuantumSet r r) ↔ QuantumGraph A f
theorem
QuantumGraph.real_toSubset_iff
{A : Type u_1}
[starAlgebra A]
[h : QuantumSet A]
{f : A →ₗ[ℂ] A}
(r : ℝ)
:
QuantumGraph.Real (QuantumSet.subset r A) (f.toSubsetQuantumSet r r) ↔ QuantumGraph.Real A f
theorem
QuantumGraph.Real.innerOne_map_one_nonneg
{A : Type u_1}
[starAlgebra A]
[hA : QuantumSet A]
[PartialOrder A]
[StarOrderedRing A]
(h₁ : ∀ ⦃a : A⦄, 0 ≤ a ↔ ∃ (b : A), a = star b * b)
{f : A →ₗ[ℂ] A}
(h : QuantumGraph.Real A f)
:
theorem
QuantumGraph.Real.innerOne_map_one_eq_zero_iff_of_kms
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
(h : QuantumGraph.Real A f)
[kms : Fact (k A = -(1 / 2))]
:
theorem
QuantumGraph.Real.innerOne_map_one_eq_zero_iff
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
(h : QuantumGraph.Real A f)
:
theorem
QuantumGraph.real_iff_complement'_real
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
:
QuantumGraph.Real A f ↔ QuantumGraph.Real A (Qam.complement' f)
theorem
QuantumGraph.Real.innerOne_map_one_eq_norm_pow_four_iff
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
(h : QuantumGraph.Real A f)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
QuantumGraph.outDegree_apply
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
(f : A →ₗ[ℂ] A)
:
QuantumGraph.outDegree f = LinearMap.mul' ℂ A ∘ₗ
LinearMap.rTensor A f ∘ₗ LinearMap.rTensor A (Algebra.linearMap ℂ A) ∘ₗ ↑(TensorProduct.lid ℂ A).symm
theorem
QuantumGraph.outDegree_eq
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
:
QuantumGraph.outDegree f = lmul (f 1)
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
QuantumGraph.inDegree_apply
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
(f : A →ₗ[ℂ] A)
:
QuantumGraph.inDegree f = LinearMap.mul' ℂ A ∘ₗ
LinearMap.lTensor A (LinearMap.adjoint f) ∘ₗ
LinearMap.lTensor A (Algebra.linearMap ℂ A) ∘ₗ ↑(TensorProduct.rid ℂ A).symm
theorem
QuantumGraph.inDegree_eq
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
:
QuantumGraph.inDegree f = rmul ((LinearMap.adjoint f) 1)
theorem
QuantumGraph.outDegree_real_eq
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{x : A →ₗ[ℂ] A}
:
theorem
QuantumGraph.inDegree_real_eq
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{x : A →ₗ[ℂ] A}
:
theorem
QuantumGraph.outDegree_eq'
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
:
QuantumGraph.outDegree f = ↑(TensorProduct.lid ℂ A) ∘ₗ
LinearMap.rTensor A Coalgebra.counit ∘ₗ
↑(PhiMap f) ∘ₗ LinearMap.rTensor A (Algebra.linearMap ℂ A) ∘ₗ ↑(TensorProduct.lid ℂ A).symm
theorem
QuantumGraph.inDegree_eq'
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
(gns : k A = 0)
{f : A →ₗ[ℂ] A}
:
QuantumGraph.inDegree f = ↑(TensorProduct.rid ℂ A) ∘ₗ
LinearMap.lTensor A Coalgebra.counit ∘ₗ
↑(PhiMap f.real) ∘ₗ LinearMap.lTensor A (Algebra.linearMap ℂ A) ∘ₗ ↑(TensorProduct.rid ℂ A).symm
theorem
QuantumGraph.inDegree_apply_schurMul
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
(gns : k A = 0)
(f₁ : A →ₗ[ℂ] A)
(f₂ : A →ₗ[ℂ] A)
:
QuantumGraph.inDegree (f₁ •ₛ f₂) = 1 •ₛ LinearMap.adjoint f₂ ∘ₗ f₁.real
def
QuantumGraph.IsRegular
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
(_h : QuantumGraph A f)
(d : ℂ)
:
Instances For
theorem
QuantumGraph.degree_is_real_of_real
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
[Nontrivial A]
{f : A →ₗ[ℂ] A}
(h : QuantumGraph.Real A f)
(d : ℂ)
(h2 : ⋯.IsRegular d)
:
d = ↑d.re
theorem
PhiMap_apply_one_one
{A : Type u_1}
{B : Type u_2}
[starAlgebra B]
[starAlgebra A]
[QuantumSet A]
[QuantumSet B]
:
theorem
ContinuousLinearMap.isPositive_iff_complex'
{E' : Type u_1}
[NormedAddCommGroup E']
[InnerProductSpace ℂ E']
[CompleteSpace E']
(T : E' →L[ℂ] E')
:
theorem
ContinuousLinearMap.isPositive_iff_complex''
{E' : Type u_1}
[NormedAddCommGroup E']
[InnerProductSpace ℂ E']
[CompleteSpace E']
(T : E' →L[ℂ] E')
:
theorem
ContinuousLinearMap.le_iff_complex_inner_le
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℂ E]
[CompleteSpace E]
{p : E →L[ℂ] E}
{q : E →L[ℂ] E}
:
theorem
isOrthogonalProjection_iff_exists
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℂ E]
[FiniteDimensional ℂ E]
{p : E →L[ℂ] E}
:
p.IsOrthogonalProjection ↔ ∃ (U : Submodule ℂ E), orthogonalProjection' U = p
theorem
orthogonalProjection'_le_one
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℂ E]
[CompleteSpace E]
[CompleteSpace ↥⊤]
(U : Submodule ℂ E)
[CompleteSpace ↥U]
:
theorem
isOrthogonalProjection_le_one
{E : Type u_1}
[NormedAddCommGroup E]
[InnerProductSpace ℂ E]
[FiniteDimensional ℂ E]
{p : E →L[ℂ] E}
(hp : p.IsOrthogonalProjection)
:
p ≤ 1
theorem
QuantumGraph.Real.gns_le_one
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
(hf : QuantumGraph.Real A f)
(gns : k A = 0)
:
LinearMap.toContinuousLinearMap ↑(PhiMap f) ≤ 1
theorem
QuantumGraph.Real.innerOne_map_one_le_norm_one_pow_four_of_gns
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
[Nontrivial A]
[PartialOrder A]
[StarOrderedRing A]
(gns : k A = 0)
(h₁ : ∀ ⦃a : A⦄, 0 ≤ a ↔ ∃ (b : A), a = star b * b)
{f : A →ₗ[ℂ] A}
(h : QuantumGraph.Real A f)
:
theorem
QuantumGraph.zero_le_degree_le_norm_one_sq_of_gns
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
[Nontrivial A]
[PartialOrder A]
[StarOrderedRing A]
(h₁ : ∀ ⦃a : A⦄, 0 ≤ a ↔ ∃ (b : A), a = star b * b)
(gns : k A = 0)
{f : A →ₗ[ℂ] A}
(h : QuantumGraph.Real A f)
(d : ℂ)
(h2 : ⋯.IsRegular d)
:
theorem
StarOrderedRing.nonneg_iff_toQuantumSetSubset
{A : Type u_1}
[NonUnitalSemiring A]
[StarRing A]
[PartialOrder A]
[StarOrderedRing A]
(r : ℝ)
:
theorem
Coalgebra.comul_comp_mul_quantumSetSubset
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
(r : ℝ)
:
Coalgebra.comul ∘ₗ LinearMap.mul' ℂ (QuantumSet.subset r A) = TensorProduct.map (QuantumSet.toSubset_algEquiv r).toLinearMap (QuantumSet.toSubset_algEquiv r).toLinearMap ∘ₗ
(Coalgebra.comul ∘ₗ LinearMap.mul' ℂ A) ∘ₗ
TensorProduct.map (QuantumSet.toSubset_algEquiv r).symm.toLinearMap
(QuantumSet.toSubset_algEquiv r).symm.toLinearMap
theorem
QuantumGraph.toSubset_isRegular_iff
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
{f : A →ₗ[ℂ] A}
(r : ℝ)
(h : QuantumGraph A f)
(d : ℂ)
:
let h' := ⋯;
h.IsRegular d ↔ h'.IsRegular d
theorem
QuantumGraph.zero_le_degree_le_norm_one_sq
{A : Type u_1}
[starAlgebra A]
[QuantumSet A]
[Nontrivial A]
[PartialOrder A]
[StarOrderedRing A]
(h₁ : ∀ ⦃a : A⦄, 0 ≤ a ↔ ∃ (b : A), a = star b * b)
{f : A →ₗ[ℂ] A}
(h : QuantumGraph.Real A f)
(d : ℂ)
(h2 : ⋯.IsRegular d)
: