Basic examples on quantum adjacency matrices #
This file contains elementary examples of quantum adjacency matrices, such as the complete graph and the trivial graph.
noncomputable def
Qam.completeGraph
(E₁ : Type u_3)
(E₂ : Type u_4)
[One E₁]
[One E₂]
[NormedAddCommGroup E₁]
[NormedAddCommGroup E₂]
[InnerProductSpace ℂ E₁]
[InnerProductSpace ℂ E₂]
:
Equations
- Qam.completeGraph E₁ E₂ = ↑(((rankOne ℂ) 1) 1)
Instances For
theorem
Qam.completeGraph_eq
{E₁ : Type u_3}
{E₂ : Type u_4}
[One E₁]
[One E₂]
[NormedAddCommGroup E₁]
[NormedAddCommGroup E₂]
[InnerProductSpace ℂ E₁]
[InnerProductSpace ℂ E₂]
:
Qam.completeGraph E₁ E₂ = ↑(((rankOne ℂ) 1) 1)
theorem
Qam.completeGraph_eq'
{A : Type u_3}
{B : Type u_4}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
:
Qam.completeGraph A B = Algebra.linearMap ℂ A ∘ₗ Coalgebra.counit
theorem
Qam.Nontracial.CompleteGraph.qam
{A : Type u_3}
{B : Type u_4}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
:
Qam.completeGraph A B •ₛ Qam.completeGraph A B = Qam.completeGraph A B
theorem
Qam.Nontracial.CompleteGraph.adjoint_eq
{E₁ : Type u_5}
{E₂ : Type u_6}
[NormedAddCommGroupOfRing E₁]
[NormedAddCommGroupOfRing E₂]
[InnerProductSpace ℂ E₁]
[InnerProductSpace ℂ E₂]
[FiniteDimensional ℂ E₁]
[FiniteDimensional ℂ E₂]
[IsScalarTower ℂ E₁ E₁]
[IsScalarTower ℂ E₂ E₂]
[SMulCommClass ℂ E₁ E₁]
[SMulCommClass ℂ E₂ E₂]
:
LinearMap.adjoint (Qam.completeGraph E₁ E₂) = Qam.completeGraph E₂ E₁
theorem
Qam.Nontracial.CompleteGraph.isSelfAdjoint
{E : Type u_5}
[One E]
[NormedAddCommGroup E]
[InnerProductSpace ℂ E]
[FiniteDimensional ℂ E]
:
theorem
Qam.Nontracial.CompleteGraph.isReal
{A : Type u_3}
{B : Type u_4}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
:
theorem
Qam.Nontracial.CompleteGraph.symm_eq
{A : Type u_3}
{B : Type u_4}
[ha : starAlgebra A]
[hb : starAlgebra B]
[hA : QuantumSet A]
[hB : QuantumSet B]
:
(symmMap ℂ B A) (Qam.completeGraph A B) = Qam.completeGraph B A
theorem
Qam.Nontracial.CompleteGraph.is_symm
{A : Type u_3}
[ha : starAlgebra A]
[hA : QuantumSet A]
:
(symmMap ℂ A A) (Qam.completeGraph A A) = Qam.completeGraph A A
theorem
Qam.Nontracial.CompleteGraph.is_reflexive
{A : Type u_3}
[ha : starAlgebra A]
[hA : QuantumSet A]
:
Qam.completeGraph A A •ₛ 1 = 1
noncomputable def
Qam.trivialGraph
(A : Type u_5)
[starAlgebra A]
[QuantumSet A]
[QuantumSetDeltaForm A]
:
Equations
- Qam.trivialGraph A = ⅟(LinearMap.mul' ℂ A ∘ₗ Coalgebra.comul)
Instances For
theorem
Qam.trivialGraph_eq
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
:
theorem
Qam.Nontracial.TrivialGraph.qam
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
:
theorem
Qam.Nontracial.TrivialGraph.qam.is_self_adjoint
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
:
LinearMap.adjoint (Qam.trivialGraph A) = Qam.trivialGraph A
theorem
Qam.Nontracial.trivialGraph
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
:
Qam.trivialGraph A •ₛ 1 = 1
theorem
Qam.refl_idempotent_one_one_of_delta
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
:
1 •ₛ 1 = QuantumSetDeltaForm.delta A • 1
theorem
Qam.Lm.Nontracial.is_unreflexive_iff_reflexive_add_one
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
(x : A →ₗ[ℂ] A)
:
theorem
Qam.refl_idempotent_completeGraph_left
{B : Type u_4}
[hb : starAlgebra B]
[hB : QuantumSet B]
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
(x : A →ₗ[ℂ] B)
:
Qam.completeGraph B A •ₛ x = x
theorem
Qam.refl_idempotent_completeGraph_right
{B : Type u_4}
[hb : starAlgebra B]
[hB : QuantumSet B]
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
(x : A →ₗ[ℂ] B)
:
x •ₛ Qam.completeGraph B A = x
noncomputable def
Qam.complement'
{E₁ : Type u_6}
{E₂ : Type u_7}
[NormedAddCommGroupOfRing E₁]
[NormedAddCommGroupOfRing E₂]
[InnerProductSpace ℂ E₁]
[InnerProductSpace ℂ E₂]
[FiniteDimensional ℂ E₁]
[FiniteDimensional ℂ E₂]
[IsScalarTower ℂ E₁ E₁]
[IsScalarTower ℂ E₂ E₂]
[SMulCommClass ℂ E₁ E₁]
[SMulCommClass ℂ E₂ E₂]
(x : E₂ →ₗ[ℂ] E₁)
:
Equations
- Qam.complement' x = Qam.completeGraph E₁ E₂ - x
Instances For
theorem
Qam.Nontracial.Complement'.qam
{B : Type u_4}
[hb : starAlgebra B]
[hB : QuantumSet B]
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
(x : A →ₗ[ℂ] B)
:
x •ₛ x = x ↔ Qam.complement' x •ₛ Qam.complement' x = Qam.complement' x
theorem
Qam.Nontracial.Complement'.qam.isReal
{B : Type u_4}
[hb : starAlgebra B]
[hB : QuantumSet B]
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
(x : A →ₗ[ℂ] B)
:
theorem
Qam.complement'_complement'
{E₁ : Type u_6}
{E₂ : Type u_7}
[NormedAddCommGroupOfRing E₁]
[NormedAddCommGroupOfRing E₂]
[InnerProductSpace ℂ E₁]
[InnerProductSpace ℂ E₂]
[FiniteDimensional ℂ E₁]
[FiniteDimensional ℂ E₂]
[IsScalarTower ℂ E₁ E₁]
[IsScalarTower ℂ E₂ E₂]
[SMulCommClass ℂ E₁ E₁]
[SMulCommClass ℂ E₂ E₂]
(x : E₁ →ₗ[ℂ] E₂)
:
Qam.complement' (Qam.complement' x) = x
theorem
Qam.Nontracial.Complement'.ir_reflexive
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
(x : A →ₗ[ℂ] A)
(α : Prop)
[Decidable α]
:
(x •ₛ 1 = if α then 1 else 0) ↔ Qam.complement' x •ₛ 1 = if α then 0 else 1
Instances
theorem
QamReflexive.toQam
{A : Type u_5}
{ha : starAlgebra A}
{hA : QuantumSet A}
{x : A →ₗ[ℂ] A}
[self : QamReflexive x]
:
x •ₛ x = x
theorem
QamReflexive.toRefl
{A : Type u_5}
{ha : starAlgebra A}
{hA : QuantumSet A}
{x : A →ₗ[ℂ] A}
[self : QamReflexive x]
:
x •ₛ 1 = 1
theorem
QamReflexive_iff
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
(x : A →ₗ[ℂ] A)
:
QamReflexive x ↔ x •ₛ x = x ∧ x •ₛ 1 = 1
Instances
theorem
QamIrreflexive.toQam
{A : Type u_5}
{ha : starAlgebra A}
{hA : QuantumSet A}
{x : A →ₗ[ℂ] A}
[self : QamIrreflexive x]
:
x •ₛ x = x
theorem
QamIrreflexive.toIrrefl
{A : Type u_5}
{ha : starAlgebra A}
{hA : QuantumSet A}
{x : A →ₗ[ℂ] A}
[self : QamIrreflexive x]
:
x •ₛ 1 = 0
theorem
QamIrreflexive_iff
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
(x : A →ₗ[ℂ] A)
:
QamIrreflexive x ↔ x •ₛ x = x ∧ x •ₛ 1 = 0
theorem
Qam.complement'_is_irreflexive_iff
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
(x : A →ₗ[ℂ] A)
:
theorem
Qam.complement'_is_reflexive_iff
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
(x : A →ₗ[ℂ] A)
:
noncomputable def
Qam.complement''
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[QuantumSetDeltaForm A]
(x : A →ₗ[ℂ] A)
:
Equations
- Qam.complement'' x = x - Qam.trivialGraph A
Instances For
theorem
Qam.complement''_is_irreflexive_iff
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
{x : A →ₗ[ℂ] A}
(hx : LinearMap.IsReal x)
:
noncomputable def
Qam.irreflexiveComplement
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[QuantumSetDeltaForm A]
(x : A →ₗ[ℂ] A)
:
Equations
Instances For
noncomputable def
Qam.reflexiveComplement
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[QuantumSetDeltaForm A]
(x : A →ₗ[ℂ] A)
:
Equations
- Qam.reflexiveComplement x = Qam.completeGraph A A + Qam.trivialGraph A - x
Instances For
theorem
Qam.Nontracial.trivialGraph.isReal
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
:
theorem
Qam.irreflexiveComplement.isReal
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
{x : A →ₗ[ℂ] A}
(hx : LinearMap.IsReal x)
:
theorem
Qam.reflexiveComplement.isReal
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
{x : A →ₗ[ℂ] A}
(hx : LinearMap.IsReal x)
:
theorem
Qam.irreflexiveComplement_irreflexiveComplement
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[QuantumSetDeltaForm A]
{x : A →ₗ[ℂ] A}
:
theorem
Qam.reflexiveComplement_reflexiveComplement
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[QuantumSetDeltaForm A]
{x : A →ₗ[ℂ] A}
:
theorem
Qam.trivialGraph_reflexiveComplement_eq_completeGraph
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[QuantumSetDeltaForm A]
:
theorem
Qam.completeGraph_reflexiveComplement_eq_trivialGraph
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[QuantumSetDeltaForm A]
:
theorem
Qam.complement'_eq
{E₁ : Type u_6}
{E₂ : Type u_7}
[NormedAddCommGroupOfRing E₁]
[NormedAddCommGroupOfRing E₂]
[InnerProductSpace ℂ E₁]
[InnerProductSpace ℂ E₂]
[FiniteDimensional ℂ E₁]
[FiniteDimensional ℂ E₂]
[IsScalarTower ℂ E₁ E₁]
[IsScalarTower ℂ E₂ E₂]
[SMulCommClass ℂ E₁ E₁]
[SMulCommClass ℂ E₂ E₂]
(a : E₂ →ₗ[ℂ] E₁)
:
Qam.complement' a = Qam.completeGraph E₁ E₂ - a
theorem
Qam.irreflexiveComplement_is_irreflexive_qam_iff_irreflexive_qam
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
{x : A →ₗ[ℂ] A}
(hx : LinearMap.IsReal x)
:
theorem
Qam.reflexive_complment_is_reflexive_qam_iff_reflexive_qam
{A : Type u_5}
[ha : starAlgebra A]
[hA : QuantumSet A]
[hA2 : QuantumSetDeltaForm A]
{x : A →ₗ[ℂ] A}
(hx : LinearMap.IsReal x)
:
theorem
QuantumSet.Psi_apply_completeGraph
{A : Type u_6}
{B : Type u_7}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
(t : ℝ)
(r : ℝ)
:
(QuantumSet.Psi t r) (Qam.completeGraph A B) = 1
theorem
QuantumSet.Psi_symm_one
{A : Type u_6}
{B : Type u_7}
[starAlgebra A]
[starAlgebra B]
[QuantumSet A]
[QuantumSet B]
(t : ℝ)
(r : ℝ)
:
(QuantumSet.Psi t r).symm 1 = Qam.completeGraph A B