Documentation

Monlib.QuantumGraph.Example

Basic examples on quantum adjacency matrices #

This file contains elementary examples of quantum adjacency matrices, such as the complete graph and the trivial graph.

noncomputable def Qam.completeGraph (E₁ : Type u_3) (E₂ : Type u_4) [One E₁] [One E₂] [NormedAddCommGroup E₁] [NormedAddCommGroup E₂] [InnerProductSpace E₁] [InnerProductSpace E₂] :
E₂ →ₗ[] E₁
Equations
Instances For
    theorem Qam.completeGraph_eq {E₁ : Type u_3} {E₂ : Type u_4} [One E₁] [One E₂] [NormedAddCommGroup E₁] [NormedAddCommGroup E₂] [InnerProductSpace E₁] [InnerProductSpace E₂] :
    Qam.completeGraph E₁ E₂ = (((rankOne ) 1) 1)
    theorem Qam.completeGraph_eq' {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] :
    Qam.completeGraph A B = Algebra.linearMap A ∘ₗ Coalgebra.counit
    theorem Qam.Nontracial.CompleteGraph.qam {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] :
    theorem Qam.Nontracial.CompleteGraph.adjoint_eq {E₁ : Type u_5} {E₂ : Type u_6} [NormedAddCommGroupOfRing E₁] [NormedAddCommGroupOfRing E₂] [InnerProductSpace E₁] [InnerProductSpace E₂] [FiniteDimensional E₁] [FiniteDimensional E₂] [IsScalarTower E₁ E₁] [IsScalarTower E₂ E₂] [SMulCommClass E₁ E₁] [SMulCommClass E₂ E₂] :
    LinearMap.adjoint (Qam.completeGraph E₁ E₂) = Qam.completeGraph E₂ E₁
    theorem Qam.Nontracial.CompleteGraph.symm_eq {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] :
    noncomputable def Qam.trivialGraph (A : Type u_5) [starAlgebra A] [QuantumSet A] [QuantumSetDeltaForm A] :
    Equations
    Instances For
      theorem Qam.Nontracial.trivialGraph {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] [hA2 : QuantumSetDeltaForm A] :
      Qam.trivialGraph A •ₛ 1 = 1
      theorem Qam.Lm.Nontracial.is_unreflexive_iff_reflexive_add_one {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] [hA2 : QuantumSetDeltaForm A] (x : A →ₗ[] A) :
      x •ₛ 1 = 0 ((QuantumSetDeltaForm.delta A)⁻¹ (x + 1)) •ₛ 1 = 1
      theorem Qam.refl_idempotent_completeGraph_left {B : Type u_4} [hb : starAlgebra B] [hB : QuantumSet B] {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] B) :
      Qam.completeGraph B A •ₛ x = x
      theorem Qam.refl_idempotent_completeGraph_right {B : Type u_4} [hb : starAlgebra B] [hB : QuantumSet B] {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] B) :
      x •ₛ Qam.completeGraph B A = x
      noncomputable def Qam.complement' {E₁ : Type u_6} {E₂ : Type u_7} [NormedAddCommGroupOfRing E₁] [NormedAddCommGroupOfRing E₂] [InnerProductSpace E₁] [InnerProductSpace E₂] [FiniteDimensional E₁] [FiniteDimensional E₂] [IsScalarTower E₁ E₁] [IsScalarTower E₂ E₂] [SMulCommClass E₁ E₁] [SMulCommClass E₂ E₂] (x : E₂ →ₗ[] E₁) :
      E₂ →ₗ[] E₁
      Equations
      Instances For
        theorem Qam.Nontracial.Complement'.qam {B : Type u_4} [hb : starAlgebra B] [hB : QuantumSet B] {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] B) :
        theorem Qam.Nontracial.Complement'.ir_reflexive {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] A) (α : Prop) [Decidable α] :
        (x •ₛ 1 = if α then 1 else 0) Qam.complement' x •ₛ 1 = if α then 0 else 1
        class QamReflexive {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] A) :
        • toQam : x •ₛ x = x
        • toRefl : x •ₛ 1 = 1
        Instances
          theorem QamReflexive.toQam {A : Type u_5} {ha : starAlgebra A} {hA : QuantumSet A} {x : A →ₗ[] A} [self : QamReflexive x] :
          x •ₛ x = x
          theorem QamReflexive.toRefl {A : Type u_5} {ha : starAlgebra A} {hA : QuantumSet A} {x : A →ₗ[] A} [self : QamReflexive x] :
          x •ₛ 1 = 1
          theorem QamReflexive_iff {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] A) :
          QamReflexive x x •ₛ x = x x •ₛ 1 = 1
          class QamIrreflexive {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] A) :
          • toQam : x •ₛ x = x
          • toIrrefl : x •ₛ 1 = 0
          Instances
            theorem QamIrreflexive.toQam {A : Type u_5} {ha : starAlgebra A} {hA : QuantumSet A} {x : A →ₗ[] A} [self : QamIrreflexive x] :
            x •ₛ x = x
            theorem QamIrreflexive.toIrrefl {A : Type u_5} {ha : starAlgebra A} {hA : QuantumSet A} {x : A →ₗ[] A} [self : QamIrreflexive x] :
            x •ₛ 1 = 0
            theorem QamIrreflexive_iff {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] A) :
            QamIrreflexive x x •ₛ x = x x •ₛ 1 = 0
            noncomputable def Qam.complement'' {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] [QuantumSetDeltaForm A] (x : A →ₗ[] A) :
            Equations
            Instances For
              noncomputable def Qam.irreflexiveComplement {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] [QuantumSetDeltaForm A] (x : A →ₗ[] A) :
              Equations
              Instances For
                noncomputable def Qam.reflexiveComplement {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] [QuantumSetDeltaForm A] (x : A →ₗ[] A) :
                Equations
                Instances For
                  theorem Qam.complement'_eq {E₁ : Type u_6} {E₂ : Type u_7} [NormedAddCommGroupOfRing E₁] [NormedAddCommGroupOfRing E₂] [InnerProductSpace E₁] [InnerProductSpace E₂] [FiniteDimensional E₁] [FiniteDimensional E₂] [IsScalarTower E₁ E₁] [IsScalarTower E₂ E₂] [SMulCommClass E₁ E₁] [SMulCommClass E₂ E₂] (a : E₂ →ₗ[] E₁) :
                  theorem QuantumSet.Psi_symm_one {A : Type u_6} {B : Type u_7} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] (t : ) (r : ) :