Documentation

Monlib.QuantumGraph.Example

Basic examples on quantum adjacency matrices #

This file contains elementary examples of quantum adjacency matrices, such as the complete graph and the trivial graph.

noncomputable def Qam.completeGraph (E₁ : Type u_3) (E₂ : Type u_4) [One E₁] [One E₂] [NormedAddCommGroup E₁] [NormedAddCommGroup E₂] [InnerProductSpace E₁] [InnerProductSpace E₂] :
E₂ →ₗ[] E₁
Equations
Instances For
    theorem Qam.completeGraph_eq {E₁ : Type u_3} {E₂ : Type u_4} [One E₁] [One E₂] [NormedAddCommGroup E₁] [NormedAddCommGroup E₂] [InnerProductSpace E₁] [InnerProductSpace E₂] :
    completeGraph E₁ E₂ = (((rankOne ) 1) 1)
    theorem Qam.Nontracial.CompleteGraph.symm_eq {A : Type u_3} {B : Type u_4} [ha : starAlgebra A] [hb : starAlgebra B] [hA : QuantumSet A] [hB : QuantumSet B] :
    theorem Qam.refl_idempotent_completeGraph_left {B : Type u_4} [hb : starAlgebra B] [hB : QuantumSet B] {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] B) :
    theorem Qam.refl_idempotent_completeGraph_right {B : Type u_4} [hb : starAlgebra B] [hB : QuantumSet B] {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] B) :
    noncomputable def Qam.complement' {E₁ : Type u_6} {E₂ : Type u_7} [NormedAddCommGroupOfRing E₁] [NormedAddCommGroupOfRing E₂] [InnerProductSpace E₁] [InnerProductSpace E₂] [FiniteDimensional E₁] [FiniteDimensional E₂] [IsScalarTower E₁ E₁] [IsScalarTower E₂ E₂] [SMulCommClass E₁ E₁] [SMulCommClass E₂ E₂] (x : E₂ →ₗ[] E₁) :
    E₂ →ₗ[] E₁
    Equations
    Instances For
      theorem Qam.Nontracial.Complement'.qam {B : Type u_4} [hb : starAlgebra B] [hB : QuantumSet B] {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] B) :
      theorem Qam.Nontracial.Complement'.ir_reflexive {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] A) (α : Prop) [Decidable α] :
      (x •ₛ 1 = if α then 1 else 0) complement' x •ₛ 1 = if α then 0 else 1
      class QamReflexive {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] A) :
      Instances
        theorem QamReflexive_iff {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] A) :
        class QamIrreflexive {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] A) :
        Instances
          theorem QamIrreflexive_iff {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] (x : A →ₗ[] A) :
          noncomputable def Qam.complement'' {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] [QuantumSetDeltaForm A] (x : A →ₗ[] A) :
          Equations
          Instances For
            noncomputable def Qam.irreflexiveComplement {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] [QuantumSetDeltaForm A] (x : A →ₗ[] A) :
            Equations
            Instances For
              noncomputable def Qam.reflexiveComplement {A : Type u_5} [ha : starAlgebra A] [hA : QuantumSet A] [QuantumSetDeltaForm A] (x : A →ₗ[] A) :
              Equations
              Instances For
                theorem Qam.complement'_eq {E₁ : Type u_6} {E₂ : Type u_7} [NormedAddCommGroupOfRing E₁] [NormedAddCommGroupOfRing E₂] [InnerProductSpace E₁] [InnerProductSpace E₂] [FiniteDimensional E₁] [FiniteDimensional E₂] [IsScalarTower E₁ E₁] [IsScalarTower E₂ E₂] [SMulCommClass E₁ E₁] [SMulCommClass E₂ E₂] (a : E₂ →ₗ[] E₁) :
                theorem QuantumSet.Psi_apply_completeGraph {A : Type u_6} {B : Type u_7} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] (t r : ) :
                (Psi t r) (Qam.completeGraph A B) = 1
                theorem QuantumSet.Psi_symm_one {A : Type u_6} {B : Type u_7} [starAlgebra A] [starAlgebra B] [QuantumSet A] [QuantumSet B] (t r : ) :