theorem
algebraMapCLM_eq_ket_one
{R : Type u_3}
{A : Type u_4}
[RCLike R]
[NormedAddCommGroupOfRing A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
:
algebraMapCLM R A = (ket R) 1
theorem
algebraMapCLM_adjoint_eq_bra_one
{R : Type u_3}
{A : Type u_4}
[RCLike R]
[NormedAddCommGroupOfRing A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
[CompleteSpace A]
:
ContinuousLinearMap.adjoint (algebraMapCLM R A) = (bra R) 1
theorem
LinearMap.adjoint_id
{𝕜 : Type u_3}
{A : Type u_4}
[RCLike 𝕜]
[NormedAddCommGroup A]
[InnerProductSpace 𝕜 A]
[FiniteDimensional 𝕜 A]
:
LinearMap.adjoint LinearMap.id = LinearMap.id
theorem
LinearMap.rTensor_adjoint
{𝕜 : Type u_3}
{A : Type u_4}
{B : Type u_5}
{C : Type u_6}
[RCLike 𝕜]
[NormedAddCommGroup A]
[NormedAddCommGroup B]
[NormedAddCommGroup C]
[InnerProductSpace 𝕜 A]
[InnerProductSpace 𝕜 B]
[InnerProductSpace 𝕜 C]
[FiniteDimensional 𝕜 A]
[FiniteDimensional 𝕜 B]
[FiniteDimensional 𝕜 C]
(f : A →ₗ[𝕜] B)
:
LinearMap.adjoint (LinearMap.rTensor C f) = LinearMap.rTensor C (LinearMap.adjoint f)
theorem
LinearMap.lTensor_adjoint
{𝕜 : Type u_3}
{A : Type u_4}
{B : Type u_5}
{C : Type u_6}
[RCLike 𝕜]
[NormedAddCommGroup A]
[NormedAddCommGroup B]
[NormedAddCommGroup C]
[InnerProductSpace 𝕜 A]
[InnerProductSpace 𝕜 B]
[InnerProductSpace 𝕜 C]
[FiniteDimensional 𝕜 A]
[FiniteDimensional 𝕜 B]
[FiniteDimensional 𝕜 C]
(f : A →ₗ[𝕜] B)
:
LinearMap.adjoint (LinearMap.lTensor C f) = LinearMap.lTensor C (LinearMap.adjoint f)
theorem
TensorProduct.rid_adjoint
{𝕜 : Type u_3}
{E : Type u_4}
[RCLike 𝕜]
[NormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
[FiniteDimensional 𝕜 E]
:
LinearMap.adjoint ↑(TensorProduct.rid 𝕜 E) = ↑(TensorProduct.rid 𝕜 E).symm
@[reducible]
noncomputable instance
Coalgebra.ofFiniteDimensionalHilbertAlgebra
{R : Type u_1}
{A : Type u_2}
[RCLike R]
[NormedAddCommGroupOfRing A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
[FiniteDimensional R A]
:
Coalgebra R A
Equations
- Coalgebra.ofFiniteDimensionalHilbertAlgebra = Coalgebra.mk ⋯ ⋯ ⋯
theorem
Coalgebra.comul_eq_mul_adjoint
{R : Type u_1}
{A : Type u_2}
[RCLike R]
[NormedAddCommGroupOfRing A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
[FiniteDimensional R A]
:
Coalgebra.comul = LinearMap.adjoint (LinearMap.mul' R A)
theorem
Coalgebra.counit_eq_unit_adjoint
{R : Type u_1}
{A : Type u_2}
[RCLike R]
[NormedAddCommGroupOfRing A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
[FiniteDimensional R A]
:
Coalgebra.counit = LinearMap.adjoint (Algebra.linearMap R A)
theorem
Coalgebra.inner_eq_counit'
{R : Type u_1}
{A : Type u_2}
[RCLike R]
[NormedAddCommGroupOfRing A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
[FiniteDimensional R A]
:
theorem
Coalgebra.counit_eq_bra_one
{R : Type u_1}
{A : Type u_2}
[RCLike R]
[NormedAddCommGroupOfRing A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
[FiniteDimensional R A]
:
theorem
Coalgebra.rTensor_mul_comp_lTensor_comul
{R : Type u_1}
{A : Type u_2}
[RCLike R]
[NormedAddCommGroupOfRing A]
[Star A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
[FiniteDimensional R A]
(h : ∃ (σ : A → A), ∀ (x y z : A), inner (x * y) z = inner y (σ (star x) * z))
:
LinearMap.rTensor A (LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A).symm ∘ₗ LinearMap.lTensor A Coalgebra.comul = Coalgebra.comul ∘ₗ LinearMap.mul' R A
theorem
Coalgebra.rTensor_mul_comp_lTensor_mul_adjoint
{R : Type u_1}
{A : Type u_2}
[RCLike R]
[NormedAddCommGroupOfRing A]
[Star A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
[FiniteDimensional R A]
(h : ∃ (σ : A → A), ∀ (x y z : A), inner (x * y) z = inner y (σ (star x) * z))
:
LinearMap.rTensor A (LinearMap.mul' R A) ∘ₗ
↑(TensorProduct.assoc R A A A).symm ∘ₗ LinearMap.lTensor A (LinearMap.adjoint (LinearMap.mul' R A)) = LinearMap.adjoint (LinearMap.mul' R A) ∘ₗ LinearMap.mul' R A
theorem
Coalgebra.lTensor_mul_comp_rTensor_comul_of
{R : Type u_1}
{A : Type u_2}
[RCLike R]
[NormedAddCommGroupOfRing A]
[Star A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
[FiniteDimensional R A]
(h : ∃ (σ : A → A), ∀ (x y z : A), inner (x * y) z = inner y (σ (star x) * z))
:
LinearMap.lTensor A (LinearMap.mul' R A) ∘ₗ ↑(TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A Coalgebra.comul = Coalgebra.comul ∘ₗ LinearMap.mul' R A
theorem
Coalgebra.lTensor_mul_comp_rTensor_mul_adjoint_of
{R : Type u_1}
{A : Type u_2}
[RCLike R]
[NormedAddCommGroupOfRing A]
[Star A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
[FiniteDimensional R A]
(h : ∃ (σ : A → A), ∀ (x y z : A), inner (x * y) z = inner y (σ (star x) * z))
:
LinearMap.lTensor A (LinearMap.mul' R A) ∘ₗ
↑(TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A (LinearMap.adjoint (LinearMap.mul' R A)) = LinearMap.adjoint (LinearMap.mul' R A) ∘ₗ LinearMap.mul' R A
noncomputable def
FiniteDimensionalCoAlgebra_isFrobeniusAlgebra_of
{R : Type u_1}
{A : Type u_2}
[RCLike R]
[NormedAddCommGroupOfRing A]
[Star A]
[InnerProductSpace R A]
[SMulCommClass R A A]
[IsScalarTower R A A]
[FiniteDimensional R A]
(h : ∃ (σ : A → A), ∀ (x y z : A), inner (x * y) z = inner y (σ (star x) * z))
:
FrobeniusAlgebra R A
Instances For
structure
LinearMap.IsCoalgHom
{R : Type u_3}
{A : Type u_4}
{B : Type u_5}
[CommSemiring R]
[AddCommMonoid A]
[Module R A]
[AddCommMonoid B]
[Module R B]
[CoalgebraStruct R A]
[CoalgebraStruct R B]
(x : A →ₗ[R] B)
:
- counit_comp : Coalgebra.counit ∘ₗ x = Coalgebra.counit
- map_comp_comul : TensorProduct.map x x ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ x
Instances For
theorem
LinearMap.IsCoalgHom.counit_comp
{R : Type u_3}
{A : Type u_4}
{B : Type u_5}
[CommSemiring R]
[AddCommMonoid A]
[Module R A]
[AddCommMonoid B]
[Module R B]
[CoalgebraStruct R A]
[CoalgebraStruct R B]
{x : A →ₗ[R] B}
(self : x.IsCoalgHom)
:
Coalgebra.counit ∘ₗ x = Coalgebra.counit
theorem
LinearMap.IsCoalgHom.map_comp_comul
{R : Type u_3}
{A : Type u_4}
{B : Type u_5}
[CommSemiring R]
[AddCommMonoid A]
[Module R A]
[AddCommMonoid B]
[Module R B]
[CoalgebraStruct R A]
[CoalgebraStruct R B]
{x : A →ₗ[R] B}
(self : x.IsCoalgHom)
:
TensorProduct.map x x ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ x
theorem
LinearMap.isCoalgHom_iff
{R : Type u_3}
{A : Type u_4}
{B : Type u_5}
[CommSemiring R]
[AddCommMonoid A]
[Module R A]
[AddCommMonoid B]
[Module R B]
[CoalgebraStruct R A]
[CoalgebraStruct R B]
(x : A →ₗ[R] B)
:
x.IsCoalgHom ↔ Coalgebra.counit ∘ₗ x = Coalgebra.counit ∧ TensorProduct.map x x ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ x
structure
LinearMap.IsAlgHom
{R : Type u_3}
{A : Type u_4}
{B : Type u_5}
[CommSemiring R]
[Semiring A]
[Semiring B]
[Algebra R A]
[Algebra R B]
(x : A →ₗ[R] B)
:
- comp_unit : x ∘ₗ Algebra.linearMap R A = Algebra.linearMap R B
- mul'_comp_map : LinearMap.mul' R B ∘ₗ TensorProduct.map x x = x ∘ₗ LinearMap.mul' R A
Instances For
theorem
LinearMap.IsAlgHom.comp_unit
{R : Type u_3}
{A : Type u_4}
{B : Type u_5}
[CommSemiring R]
[Semiring A]
[Semiring B]
[Algebra R A]
[Algebra R B]
{x : A →ₗ[R] B}
(self : x.IsAlgHom)
:
x ∘ₗ Algebra.linearMap R A = Algebra.linearMap R B
theorem
LinearMap.IsAlgHom.mul'_comp_map
{R : Type u_3}
{A : Type u_4}
{B : Type u_5}
[CommSemiring R]
[Semiring A]
[Semiring B]
[Algebra R A]
[Algebra R B]
{x : A →ₗ[R] B}
(self : x.IsAlgHom)
:
LinearMap.mul' R B ∘ₗ TensorProduct.map x x = x ∘ₗ LinearMap.mul' R A
theorem
LinearMap.isAlgHom_iff
{R : Type u_3}
{A : Type u_4}
{B : Type u_5}
[CommSemiring R]
[Semiring A]
[Semiring B]
[Algebra R A]
[Algebra R B]
(x : A →ₗ[R] B)
:
x.IsAlgHom ↔ x ∘ₗ Algebra.linearMap R A = Algebra.linearMap R B ∧ LinearMap.mul' R B ∘ₗ TensorProduct.map x x = x ∘ₗ LinearMap.mul' R A
theorem
LinearMap.isAlgHom_iff_adjoint_isCoalgHom
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[RCLike R]
[NormedAddCommGroupOfRing A]
[NormedAddCommGroupOfRing B]
[InnerProductSpace R A]
[InnerProductSpace R B]
[SMulCommClass R A A]
[SMulCommClass R B B]
[IsScalarTower R A A]
[IsScalarTower R B B]
[FiniteDimensional R A]
[FiniteDimensional R B]
(x : A →ₗ[R] B)
:
x.IsAlgHom ↔ (LinearMap.adjoint x).IsCoalgHom
theorem
LinearMap.isCoalgHom_iff_adjoint_isAlgHom
{R : Type u_1}
{A : Type u_2}
{B : Type u_3}
[RCLike R]
[NormedAddCommGroupOfRing A]
[NormedAddCommGroupOfRing B]
[InnerProductSpace R A]
[InnerProductSpace R B]
[SMulCommClass R A A]
[SMulCommClass R B B]
[IsScalarTower R A A]
[IsScalarTower R B B]
[FiniteDimensional R A]
[FiniteDimensional R B]
(x : A →ₗ[R] B)
:
x.IsCoalgHom ↔ (LinearMap.adjoint x).IsAlgHom