Documentation

Monlib.LinearAlgebra.Coalgebra.FiniteDimensional

theorem algebraMapCLM_adjoint_eq_bra_one {R : Type u_3} {A : Type u_4} [RCLike R] [NormedAddCommGroupOfRing A] [InnerProductSpace R A] [SMulCommClass R A A] [IsScalarTower R A A] [CompleteSpace A] :
ContinuousLinearMap.adjoint (algebraMapCLM R A) = (bra R) 1
theorem LinearMap.adjoint_id {𝕜 : Type u_3} {A : Type u_4} [RCLike 𝕜] [NormedAddCommGroup A] [InnerProductSpace 𝕜 A] [FiniteDimensional 𝕜 A] :
LinearMap.adjoint LinearMap.id = LinearMap.id
theorem LinearMap.rTensor_adjoint {𝕜 : Type u_3} {A : Type u_4} {B : Type u_5} {C : Type u_6} [RCLike 𝕜] [NormedAddCommGroup A] [NormedAddCommGroup B] [NormedAddCommGroup C] [InnerProductSpace 𝕜 A] [InnerProductSpace 𝕜 B] [InnerProductSpace 𝕜 C] [FiniteDimensional 𝕜 A] [FiniteDimensional 𝕜 B] [FiniteDimensional 𝕜 C] (f : A →ₗ[𝕜] B) :
LinearMap.adjoint (LinearMap.rTensor C f) = LinearMap.rTensor C (LinearMap.adjoint f)
theorem LinearMap.lTensor_adjoint {𝕜 : Type u_3} {A : Type u_4} {B : Type u_5} {C : Type u_6} [RCLike 𝕜] [NormedAddCommGroup A] [NormedAddCommGroup B] [NormedAddCommGroup C] [InnerProductSpace 𝕜 A] [InnerProductSpace 𝕜 B] [InnerProductSpace 𝕜 C] [FiniteDimensional 𝕜 A] [FiniteDimensional 𝕜 B] [FiniteDimensional 𝕜 C] (f : A →ₗ[𝕜] B) :
LinearMap.adjoint (LinearMap.lTensor C f) = LinearMap.lTensor C (LinearMap.adjoint f)
theorem TensorProduct.rid_adjoint {𝕜 : Type u_3} {E : Type u_4} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :
LinearMap.adjoint (TensorProduct.rid 𝕜 E) = (TensorProduct.rid 𝕜 E).symm
@[reducible]
Equations
  • Coalgebra.ofFiniteDimensionalHilbertAlgebra = Coalgebra.mk
theorem Coalgebra.comul_eq_mul_adjoint {R : Type u_1} {A : Type u_2} [RCLike R] [NormedAddCommGroupOfRing A] [InnerProductSpace R A] [SMulCommClass R A A] [IsScalarTower R A A] [FiniteDimensional R A] :
Coalgebra.comul = LinearMap.adjoint (LinearMap.mul' R A)
theorem Coalgebra.counit_eq_unit_adjoint {R : Type u_1} {A : Type u_2} [RCLike R] [NormedAddCommGroupOfRing A] [InnerProductSpace R A] [SMulCommClass R A A] [IsScalarTower R A A] [FiniteDimensional R A] :
Coalgebra.counit = LinearMap.adjoint (Algebra.linearMap R A)
theorem Coalgebra.inner_eq_counit' {R : Type u_1} {A : Type u_2} [RCLike R] [NormedAddCommGroupOfRing A] [InnerProductSpace R A] [SMulCommClass R A A] [IsScalarTower R A A] [FiniteDimensional R A] :
(fun (x : A) => inner 1 x) = Coalgebra.counit
theorem Coalgebra.counit_eq_bra_one {R : Type u_1} {A : Type u_2} [RCLike R] [NormedAddCommGroupOfRing A] [InnerProductSpace R A] [SMulCommClass R A A] [IsScalarTower R A A] [FiniteDimensional R A] :
Coalgebra.counit = ((bra R) 1)
theorem Coalgebra.rTensor_mul_comp_lTensor_comul {R : Type u_1} {A : Type u_2} [RCLike R] [NormedAddCommGroupOfRing A] [Star A] [InnerProductSpace R A] [SMulCommClass R A A] [IsScalarTower R A A] [FiniteDimensional R A] (h : ∃ (σ : AA), ∀ (x y z : A), inner (x * y) z = inner y (σ (star x) * z)) :
LinearMap.rTensor A (LinearMap.mul' R A) ∘ₗ (TensorProduct.assoc R A A A).symm ∘ₗ LinearMap.lTensor A Coalgebra.comul = Coalgebra.comul ∘ₗ LinearMap.mul' R A
theorem Coalgebra.rTensor_mul_comp_lTensor_mul_adjoint {R : Type u_1} {A : Type u_2} [RCLike R] [NormedAddCommGroupOfRing A] [Star A] [InnerProductSpace R A] [SMulCommClass R A A] [IsScalarTower R A A] [FiniteDimensional R A] (h : ∃ (σ : AA), ∀ (x y z : A), inner (x * y) z = inner y (σ (star x) * z)) :
LinearMap.rTensor A (LinearMap.mul' R A) ∘ₗ (TensorProduct.assoc R A A A).symm ∘ₗ LinearMap.lTensor A (LinearMap.adjoint (LinearMap.mul' R A)) = LinearMap.adjoint (LinearMap.mul' R A) ∘ₗ LinearMap.mul' R A
theorem Coalgebra.lTensor_mul_comp_rTensor_comul_of {R : Type u_1} {A : Type u_2} [RCLike R] [NormedAddCommGroupOfRing A] [Star A] [InnerProductSpace R A] [SMulCommClass R A A] [IsScalarTower R A A] [FiniteDimensional R A] (h : ∃ (σ : AA), ∀ (x y z : A), inner (x * y) z = inner y (σ (star x) * z)) :
LinearMap.lTensor A (LinearMap.mul' R A) ∘ₗ (TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A Coalgebra.comul = Coalgebra.comul ∘ₗ LinearMap.mul' R A
theorem Coalgebra.lTensor_mul_comp_rTensor_mul_adjoint_of {R : Type u_1} {A : Type u_2} [RCLike R] [NormedAddCommGroupOfRing A] [Star A] [InnerProductSpace R A] [SMulCommClass R A A] [IsScalarTower R A A] [FiniteDimensional R A] (h : ∃ (σ : AA), ∀ (x y z : A), inner (x * y) z = inner y (σ (star x) * z)) :
LinearMap.lTensor A (LinearMap.mul' R A) ∘ₗ (TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A (LinearMap.adjoint (LinearMap.mul' R A)) = LinearMap.adjoint (LinearMap.mul' R A) ∘ₗ LinearMap.mul' R A
noncomputable def FiniteDimensionalCoAlgebra_isFrobeniusAlgebra_of {R : Type u_1} {A : Type u_2} [RCLike R] [NormedAddCommGroupOfRing A] [Star A] [InnerProductSpace R A] [SMulCommClass R A A] [IsScalarTower R A A] [FiniteDimensional R A] (h : ∃ (σ : AA), ∀ (x y z : A), inner (x * y) z = inner y (σ (star x) * z)) :
Equations
Instances For
    structure LinearMap.IsCoalgHom {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (x : A →ₗ[R] B) :
    • counit_comp : Coalgebra.counit ∘ₗ x = Coalgebra.counit
    • map_comp_comul : TensorProduct.map x x ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ x
    Instances For
      theorem LinearMap.IsCoalgHom.counit_comp {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {x : A →ₗ[R] B} (self : x.IsCoalgHom) :
      Coalgebra.counit ∘ₗ x = Coalgebra.counit
      theorem LinearMap.IsCoalgHom.map_comp_comul {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] {x : A →ₗ[R] B} (self : x.IsCoalgHom) :
      TensorProduct.map x x ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ x
      theorem LinearMap.isCoalgHom_iff {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [AddCommMonoid A] [Module R A] [AddCommMonoid B] [Module R B] [CoalgebraStruct R A] [CoalgebraStruct R B] (x : A →ₗ[R] B) :
      x.IsCoalgHom Coalgebra.counit ∘ₗ x = Coalgebra.counit TensorProduct.map x x ∘ₗ Coalgebra.comul = Coalgebra.comul ∘ₗ x
      structure LinearMap.IsAlgHom {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (x : A →ₗ[R] B) :
      Instances For
        theorem LinearMap.IsAlgHom.comp_unit {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {x : A →ₗ[R] B} (self : x.IsAlgHom) :
        theorem LinearMap.IsAlgHom.mul'_comp_map {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] {x : A →ₗ[R] B} (self : x.IsAlgHom) :
        LinearMap.mul' R B ∘ₗ TensorProduct.map x x = x ∘ₗ LinearMap.mul' R A
        theorem LinearMap.isAlgHom_iff {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (x : A →ₗ[R] B) :
        x.IsAlgHom x ∘ₗ Algebra.linearMap R A = Algebra.linearMap R B LinearMap.mul' R B ∘ₗ TensorProduct.map x x = x ∘ₗ LinearMap.mul' R A
        theorem AlgHom.isAlgHom {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (x : A →ₐ[R] B) :
        x.toLinearMap.IsAlgHom
        theorem AlgEquiv.isAlgHom {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommSemiring R] [Semiring A] [Semiring B] [Algebra R A] [Algebra R B] (x : A ≃ₐ[R] B) :
        x.toLinearMap.IsAlgHom
        theorem LinearMap.isAlgHom_iff_adjoint_isCoalgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [RCLike R] [NormedAddCommGroupOfRing A] [NormedAddCommGroupOfRing B] [InnerProductSpace R A] [InnerProductSpace R B] [SMulCommClass R A A] [SMulCommClass R B B] [IsScalarTower R A A] [IsScalarTower R B B] [FiniteDimensional R A] [FiniteDimensional R B] (x : A →ₗ[R] B) :
        x.IsAlgHom (LinearMap.adjoint x).IsCoalgHom
        theorem LinearMap.isCoalgHom_iff_adjoint_isAlgHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [RCLike R] [NormedAddCommGroupOfRing A] [NormedAddCommGroupOfRing B] [InnerProductSpace R A] [InnerProductSpace R B] [SMulCommClass R A A] [SMulCommClass R B B] [IsScalarTower R A A] [IsScalarTower R B B] [FiniteDimensional R A] [FiniteDimensional R B] (x : A →ₗ[R] B) :
        x.IsCoalgHom (LinearMap.adjoint x).IsAlgHom