Documentation

Monlib.LinearAlgebra.Ips.Vn

A bit on von Neumann algebras #

This file contains two simple results about von Neumann algebras.

theorem VonNeumannAlgebra.elem_idempotent_iff_ker_and_range_invariantUnder_commutant {H : Type u_1} [NormedAddCommGroup H] [InnerProductSpace H] [CompleteSpace H] (M : VonNeumannAlgebra H) (e : H →L[] H) (h : IsIdempotentElem e) :
e M yM.commutant, (LinearMap.ker e).InvariantUnder y (LinearMap.range e).InvariantUnder y

a continuous linear map e is in the von Neumann algebra M if and only if e.ker and e.range are M' (i.e., the commutant of M or M.centralizer) invariant subspaces

By definition, the bounded linear operators on a Hilbert space H form a von Neumann algebra.

!!(But the note on the definition says that we can't do this because it's a bundled structure?)!! idk?

Equations
  • VonNeumannAlgebra.ofHilbertSpace = { carrier := Set.univ, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := , algebraMap_mem' := , star_mem' := , centralizer_centralizer' := }
Instances For