Documentation

Monlib.LinearAlgebra.OfNorm

theorem cs_aux {๐•œ : Type u_2} {E : Type u_1} [RCLike ๐•œ] [NormedAddCommGroup E] [InnerProductSpace ๐•œ E] {x : E} {y : E} (hy : y โ‰  0) :
noncomputable def OfNorm.innerDef {๐•œ : Type u_1} {X : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup X] [NormedSpace ๐•œ X] (x : X) (y : X) :
๐•œ
Equations
Instances For
    theorem OfNorm.re_innerDef {๐•œ : Type u_1} {X : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup X] [NormedSpace ๐•œ X] (x : X) (y : X) :
    theorem OfNorm.im_eq_re_neg_i {๐•œ : Type u_1} [RCLike ๐•œ] (x : ๐•œ) :
    RCLike.im x = RCLike.re (-RCLike.I * x)
    theorem OfNorm.innerDef_zero_left {๐•œ : Type u_1} {X : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup X] [NormedSpace ๐•œ X] (x : X) :
    theorem OfNorm.innerDef_i_smul_left {๐•œ : Type u_1} {X : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup X] [NormedSpace ๐•œ X] (x : X) (y : X) :
    OfNorm.innerDef (RCLike.I โ€ข x) y = -RCLike.I * OfNorm.innerDef x y
    theorem OfNorm.im_innerDef_aux {๐•œ : Type u_1} {X : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup X] [NormedSpace ๐•œ X] (x : X) (y : X) :
    RCLike.im (OfNorm.innerDef x y) = RCLike.re (OfNorm.innerDef (RCLike.I โ€ข x) y)
    theorem OfNorm.re_innerDef_symm {๐•œ : Type u_1} {X : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup X] [NormedSpace ๐•œ X] (x : X) (y : X) :
    RCLike.re (OfNorm.innerDef x y) = RCLike.re (OfNorm.innerDef y x)
    theorem OfNorm.im_innerDef_symm {๐•œ : Type u_1} {X : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup X] [NormedSpace ๐•œ X] (x : X) (y : X) :
    RCLike.im (OfNorm.innerDef x y) = -RCLike.im (OfNorm.innerDef y x)
    theorem OfNorm.innerDef_conj {๐•œ : Type u_1} {X : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup X] [NormedSpace ๐•œ X] (x : X) (y : X) :
    def IsContinuousLinearMap (๐•œ : Type u_1) [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’ F) :
    Equations
    Instances For
      def IsContinuousLinearMap.mk' {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} (h : IsContinuousLinearMap ๐•œ f) :
      E โ†’L[๐•œ] F
      Equations
      Instances For
        theorem IsContinuousLinearMap.coe_mk' {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} (h : IsContinuousLinearMap ๐•œ f) :
        f = โ‡‘h.mk'
        theorem isBoundedLinearMap_iff_isContinuousLinearMap {๐•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’ F) :
        def WithBound {E : Type u_1} [NormedAddCommGroup E] {F : Type u_2} [NormedAddCommGroup F] (f : E โ†’ F) :
        Equations
        Instances For
          theorem IsBoundedLinearMap.def {๐•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} :
          theorem LinearMap.withBound_iff_is_continuous {๐•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’โ‚—[๐•œ] F} :
          WithBound โ‡‘f โ†” Continuous โ‡‘f
          theorem LinearMap.ker_coe_def {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [AddCommMonoid E] [AddCommMonoid F] [Module R E] [Module R F] {f : E โ†’โ‚—[R] F} :
          โ†‘(LinearMap.ker f) = {x : E | f x = 0}
          theorem exists_dual_vector_of_ne {๐•œ : Type u_2} [RCLike ๐•œ] {X : Type u_1} [NormedAddCommGroup X] [NormedSpace ๐•œ X] {x : X} {y : X} (h : x โ‰  y) :
          โˆƒ (f : NormedSpace.Dual ๐•œ X), f x โ‰  f y
          theorem isLinearMap_zero (R : Type u_1) {E : Type u_2} {F : Type u_3} [CommSemiring R] [AddCommMonoid E] [Module R E] [AddCommMonoid F] [Module R F] :
          theorem isContinuousLinearMapZero {๐•œ : Type u_1} {E : Type u_2} [NormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] :
          theorem IsContinuousLinearMap.ofInnerSymmetricFun {๐•œ : Type u_2} [RCLike ๐•œ] {X : Type u_1} [NormedAddCommGroup X] [InnerProductSpace ๐•œ X] [CompleteSpace X] {f : X โ†’ X} (h : โˆ€ (a b : X), inner (f a) b = inner a (f b)) :
          structure IsBilinearMap (๐•œ : Type u_1) [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E ร— F โ†’ G) :
          • add_left : โˆ€ (xโ‚ xโ‚‚ : E) (y : F), f (xโ‚ + xโ‚‚, y) = f (xโ‚, y) + f (xโ‚‚, y)
          • smul_left : โˆ€ (c : ๐•œ) (x : E) (y : F), f (c โ€ข x, y) = c โ€ข f (x, y)
          • add_right : โˆ€ (x : E) (yโ‚ yโ‚‚ : F), f (x, yโ‚ + yโ‚‚) = f (x, yโ‚) + f (x, yโ‚‚)
          • smul_right : โˆ€ (c : ๐•œ) (x : E) (y : F), f (x, c โ€ข y) = c โ€ข f (x, y)
          Instances For
            theorem IsBilinearMap.add_left {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} (self : IsBilinearMap ๐•œ f) (xโ‚ : E) (xโ‚‚ : E) (y : F) :
            f (xโ‚ + xโ‚‚, y) = f (xโ‚, y) + f (xโ‚‚, y)
            theorem IsBilinearMap.smul_left {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} (self : IsBilinearMap ๐•œ f) (c : ๐•œ) (x : E) (y : F) :
            f (c โ€ข x, y) = c โ€ข f (x, y)
            theorem IsBilinearMap.add_right {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} (self : IsBilinearMap ๐•œ f) (x : E) (yโ‚ : F) (yโ‚‚ : F) :
            f (x, yโ‚ + yโ‚‚) = f (x, yโ‚) + f (x, yโ‚‚)
            theorem IsBilinearMap.smul_right {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} (self : IsBilinearMap ๐•œ f) (c : ๐•œ) (x : E) (y : F) :
            f (x, c โ€ข y) = c โ€ข f (x, y)
            def IsLeftLinearMap (๐•œ : Type u_1) [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E ร— F โ†’ G) :
            Equations
            Instances For
              theorem isLeftLinearMap_iff {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} :
              IsLeftLinearMap ๐•œ f โ†” โˆ€ (b : F), IsLinearMap ๐•œ fun (a : E) => f (a, b)
              def IsRightLinearMap (๐•œ : Type u_1) [NormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] (f : E ร— F โ†’ G) :
              Equations
              Instances For
                theorem isRightLinearMap_iff {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} :
                IsRightLinearMap ๐•œ f โ†” โˆ€ (a : E), IsLinearMap ๐•œ fun (b : F) => f (a, b)
                theorem isBilinearMap_iff_is_linear_map_left_right {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} :
                IsBilinearMap ๐•œ f โ†” IsLeftLinearMap ๐•œ f โˆง IsRightLinearMap ๐•œ f
                def IsBilinearMap.toLmLm {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} (hf : IsBilinearMap ๐•œ f) :
                E โ†’โ‚—[๐•œ] F โ†’โ‚—[๐•œ] G
                Equations
                • hf.toLmLm = { toFun := fun (x : E) => { toFun := fun (y : F) => f (x, y), map_add' := โ‹ฏ, map_smul' := โ‹ฏ }, map_add' := โ‹ฏ, map_smul' := โ‹ฏ }
                Instances For
                  def IsLmLeftIsClmRight.toLmClm {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} (hfโ‚ : โˆ€ (y : F), IsLinearMap ๐•œ fun (a : E) => f (a, y)) (hfโ‚‚ : โˆ€ (x : E), IsContinuousLinearMap ๐•œ fun (a : F) => f (x, a)) :
                  E โ†’โ‚—[๐•œ] F โ†’L[๐•œ] G
                  Equations
                  Instances For
                    theorem IsBilinearMap.zero_left {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} (h : IsBilinearMap ๐•œ f) (y : F) :
                    f (0, y) = 0
                    theorem IsBilinearMap.zero_right {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} (h : IsBilinearMap ๐•œ f) (x : E) :
                    f (x, 0) = 0
                    theorem IsBilinearMap.eq_zero_add_self {๐•œ : Type u_1} [NormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace ๐•œ G] {f : E ร— F โ†’ G} (h : IsBilinearMap ๐•œ f) (xy : E ร— F) :
                    f xy = f (xy.1, 0) + f xy
                    theorem IsContinuousLinearMap.to_is_lm {๐•œ : Type u_1} {X : Type u_2} {Y : Type u_3} [NormedField ๐•œ] [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedSpace ๐•œ X] [NormedSpace ๐•œ Y] {ฮฒ : X โ†’ Y} (hf : IsContinuousLinearMap ๐•œ ฮฒ) :
                    IsLinearMap ๐•œ ฮฒ
                    theorem Set.mem_extremePoints_iff' {๐•œ : Type u_2} [RCLike ๐•œ] {H : Type u_1} [AddCommMonoid H] [SMul ๐•œ H] (x : H) (y : Set H) :
                    x โˆˆ Set.extremePoints ๐•œ y โ†” x โˆˆ y โˆง โˆ€ xโ‚ โˆˆ y, โˆ€ xโ‚‚ โˆˆ y, (โˆƒ (a : ๐•œ), 0 < a โˆง a < 1 โˆง a โ€ข xโ‚ + (1 - a) โ€ข xโ‚‚ = x) โ†’ xโ‚ = x โˆง xโ‚‚ = x
                    theorem Metric.mem_extremePoints_of_closed_unitBall_iff {๐•œ : Type u_1} {H : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup H] [NormedSpace ๐•œ H] (x : H) :
                    x โˆˆ Set.extremePoints ๐•œ (Metric.closedBall 0 1) โ†” โ€–xโ€– โ‰ค 1 โˆง โˆ€ (xโ‚ : H), โ€–xโ‚โ€– โ‰ค 1 โ†’ โˆ€ (xโ‚‚ : H), โ€–xโ‚‚โ€– โ‰ค 1 โ†’ (โˆƒ (a : ๐•œ), 0 < a โˆง a < 1 โˆง a โ€ข xโ‚ + (1 - a) โ€ข xโ‚‚ = x) โ†’ xโ‚ = x โˆง xโ‚‚ = x
                    theorem Metric.mem_extremePoints_of_unitBall_iff {๐•œ : Type u_1} {H : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup H] [NormedSpace ๐•œ H] (x : H) :
                    x โˆˆ Set.extremePoints ๐•œ (Metric.ball 0 1) โ†” โ€–xโ€– < 1 โˆง โˆ€ (xโ‚ : H), โ€–xโ‚โ€– < 1 โ†’ โˆ€ (xโ‚‚ : H), โ€–xโ‚‚โ€– < 1 โ†’ (โˆƒ (a : ๐•œ), 0 < a โˆง a < 1 โˆง a โ€ข xโ‚ + (1 - a) โ€ข xโ‚‚ = x) โ†’ xโ‚ = x โˆง xโ‚‚ = x
                    theorem Metric.exists_mem_closed_unitBall_of_norm_one (๐•œ : Type u_1) (H : Type u_2) [RCLike ๐•œ] [NormedAddCommGroup H] [NormedSpace ๐•œ H] [Nontrivial H] :
                    theorem Metric.exists_mem_unitBall_of_norm_one (๐•œ : Type u_1) (H : Type u_2) [RCLike ๐•œ] [NormedAddCommGroup H] [NormedSpace ๐•œ H] [Nontrivial H] :
                    โˆƒ (x : H) (ฮต : โ„), โ€–xโ€– = ฮต โˆง 0 < ฮต โˆง ฮต < 1 โˆง x โˆˆ Metric.ball 0 1
                    theorem inner_lt_one_iff_of_norm_one {๐•œ : Type u_1} {H : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup H] [InnerProductSpace ๐•œ H] {x : H} {y : H} (hx : โ€–xโ€– = 1) (hy : โ€–yโ€– = 1) :
                    inner x y < 1 โ†” x โ‰  y โˆง โ†‘(RCLike.re (inner x y)) = inner x y
                    theorem re_inner_lt_one_iff_of_norm_one {๐•œ : Type u_1} {H : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup H] [InnerProductSpace ๐•œ H] {x : H} {y : H} (hx : โ€–xโ€– = 1) (hy : โ€–yโ€– = 1) :
                    RCLike.re (inner x y) < 1 โ†” x โ‰  y
                    theorem ne_zero_iff_nontrivial_of_mem_extremePoints_closed_unitBall {๐•œ : Type u_1} {H : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup H] [NormedSpace ๐•œ H] {x : H} (hx : x โˆˆ Set.extremePoints ๐•œ (Metric.closedBall 0 1)) :
                    theorem norm_one_of_mem_extremePoints_of_closed_unitBall {๐•œ : Type u_1} {H : Type u_2} [RCLike ๐•œ] [NormedAddCommGroup H] [NormedSpace ๐•œ H] [Nontrivial H] {x : H} (hx : x โˆˆ Set.extremePoints ๐•œ (Metric.closedBall 0 1)) :
                    theorem LinearIsometry.norm_comp_toContinuousLinearMap_le {๐•œ : Type u_1} {X : Type u_2} {Y : Type u_3} {Z : Type u_4} [RCLike ๐•œ] [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedAddCommGroup Z] [NormedSpace ๐•œ X] [NormedSpace ๐•œ Y] [NormedSpace ๐•œ Z] (f : X โ†’โ‚—แตข[๐•œ] Y) (h : Y โ†’L[๐•œ] Z) :
                    โ€–h.comp f.toContinuousLinearMapโ€– โ‰ค โ€–hโ€–
                    def NormedSpace.Dual.transpose {E : Type u_1} {F : Type u_2} (๐•œ : Type u_3) [RCLike ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) :
                    NormedSpace.Dual ๐•œ F โ†’โ‚—[๐•œ] NormedSpace.Dual ๐•œ E
                    Equations
                    Instances For
                      @[simp]
                      theorem NormedSpace.Dual.transpose_apply {E : Type u_1} {F : Type u_2} (๐•œ : Type u_3) [RCLike ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ†’L[๐•œ] F) (x : NormedSpace.Dual ๐•œ F) :
                      theorem NormedSpace.Dual.transpose_isometry {๐•œ : Type u_1} {X : Type u_2} {Y : Type u_3} [RCLike ๐•œ] [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedSpace ๐•œ X] [NormedSpace ๐•œ Y] {f : X โ‰ƒโ‚—แตข[๐•œ] Y} :
                      Isometry โ‡‘(NormedSpace.Dual.transpose ๐•œ f.toLinearIsometry.toContinuousLinearMap)
                      def LinearEquiv.transpose {E : Type u_1} {F : Type u_2} (๐•œ : Type u_3) [RCLike ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ‰ƒโ‚—แตข[๐•œ] F) :
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem LinearEquiv.transpose_toFun {E : Type u_1} {F : Type u_2} (๐•œ : Type u_3) [RCLike ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ‰ƒโ‚—แตข[๐•œ] F) (a : NormedSpace.Dual ๐•œ F) :
                        (LinearEquiv.transpose ๐•œ f) a = (NormedSpace.Dual.transpose ๐•œ f.toLinearIsometry.toContinuousLinearMap) a
                        @[simp]
                        theorem LinearEquiv.transpose_symm_apply {E : Type u_1} {F : Type u_2} (๐•œ : Type u_3) [RCLike ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ‰ƒโ‚—แตข[๐•œ] F) (a : NormedSpace.Dual ๐•œ E) :
                        (LinearEquiv.transpose ๐•œ f).symm a = (NormedSpace.Dual.transpose ๐•œ f.symm.toLinearIsometry.toContinuousLinearMap) a
                        @[simp]
                        theorem LinearEquiv.transpose_invFun {E : Type u_1} {F : Type u_2} (๐•œ : Type u_3) [RCLike ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ‰ƒโ‚—แตข[๐•œ] F) (a : NormedSpace.Dual ๐•œ E) :
                        (LinearEquiv.transpose ๐•œ f).invFun a = (NormedSpace.Dual.transpose ๐•œ f.symm.toLinearIsometry.toContinuousLinearMap) a
                        @[simp]
                        theorem LinearEquiv.transpose_apply {E : Type u_1} {F : Type u_2} (๐•œ : Type u_3) [RCLike ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : E โ‰ƒโ‚—แตข[๐•œ] F) (a : NormedSpace.Dual ๐•œ F) :
                        (LinearEquiv.transpose ๐•œ f) a = (NormedSpace.Dual.transpose ๐•œ f.toLinearIsometry.toContinuousLinearMap) a
                        theorem Set.subset_diff_inj {ฮฑ : Type u_1} (s : Set ฮฑ) {t : Set ฮฑ} {u : Set ฮฑ} (h : u โŠ† t) :
                        s โŠ† t โ†” s \ u โŠ† t \ u
                        theorem example_pos_commute_iff_pos_mul_of {๐•œ : Type u_1} {R : Type u_2} [RCLike ๐•œ] [Ring R] [PartialOrder R] [StarRing R] [StarOrderedRing R] [Algebra ๐•œ R] (hโ‚ : โˆ€ (x : R), 0 โ‰ค x โ†” โˆƒ (r : R), x = star r * r) (hโ‚‚ : โˆ€ (x : R), 0 โ‰ค x โ†” IsSelfAdjoint x โˆง spectrum ๐•œ x โŠ† {a : ๐•œ | 0 โ‰ค a}) {x : R} {y : R} (hx : 0 โ‰ค x) (hy : 0 โ‰ค y) :