noncomputable def
OfNorm.innerDef
{๐ : Type u_1}
{X : Type u_2}
[RCLike ๐]
[NormedAddCommGroup X]
[NormedSpace ๐ X]
(x : X)
(y : X)
:
๐
Equations
Instances For
theorem
OfNorm.re_innerDef
{๐ : Type u_1}
{X : Type u_2}
[RCLike ๐]
[NormedAddCommGroup X]
[NormedSpace ๐ X]
(x : X)
(y : X)
:
theorem
OfNorm.innerDef_zero_left
{๐ : Type u_1}
{X : Type u_2}
[RCLike ๐]
[NormedAddCommGroup X]
[NormedSpace ๐ X]
(x : X)
:
OfNorm.innerDef 0 x = 0
theorem
OfNorm.innerDef_i_smul_left
{๐ : Type u_1}
{X : Type u_2}
[RCLike ๐]
[NormedAddCommGroup X]
[NormedSpace ๐ X]
(x : X)
(y : X)
:
OfNorm.innerDef (RCLike.I โข x) y = -RCLike.I * OfNorm.innerDef x y
theorem
OfNorm.im_innerDef_aux
{๐ : Type u_1}
{X : Type u_2}
[RCLike ๐]
[NormedAddCommGroup X]
[NormedSpace ๐ X]
(x : X)
(y : X)
:
RCLike.im (OfNorm.innerDef x y) = RCLike.re (OfNorm.innerDef (RCLike.I โข x) y)
theorem
OfNorm.re_innerDef_symm
{๐ : Type u_1}
{X : Type u_2}
[RCLike ๐]
[NormedAddCommGroup X]
[NormedSpace ๐ X]
(x : X)
(y : X)
:
RCLike.re (OfNorm.innerDef x y) = RCLike.re (OfNorm.innerDef y x)
theorem
OfNorm.im_innerDef_symm
{๐ : Type u_1}
{X : Type u_2}
[RCLike ๐]
[NormedAddCommGroup X]
[NormedSpace ๐ X]
(x : X)
(y : X)
:
RCLike.im (OfNorm.innerDef x y) = -RCLike.im (OfNorm.innerDef y x)
theorem
OfNorm.innerDef_conj
{๐ : Type u_1}
{X : Type u_2}
[RCLike ๐]
[NormedAddCommGroup X]
[NormedSpace ๐ X]
(x : X)
(y : X)
:
(starRingEnd ๐) (OfNorm.innerDef x y) = OfNorm.innerDef y x
def
IsContinuousLinearMap
(๐ : Type u_1)
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โ F)
:
Equations
- IsContinuousLinearMap ๐ f = (IsLinearMap ๐ f โง Continuous f)
Instances For
def
IsContinuousLinearMap.mk'
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{f : E โ F}
(h : IsContinuousLinearMap ๐ f)
:
Equations
- h.mk' = { toLinearMap := IsLinearMap.mk' f โฏ, cont := โฏ }
Instances For
theorem
IsContinuousLinearMap.coe_mk'
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{f : E โ F}
(h : IsContinuousLinearMap ๐ f)
:
f = โh.mk'
theorem
isBoundedLinearMap_iff_isContinuousLinearMap
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โ F)
:
IsBoundedLinearMap ๐ f โ IsContinuousLinearMap ๐ f
theorem
IsBoundedLinearMap.def
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{f : E โ F}
:
IsBoundedLinearMap ๐ f โ IsLinearMap ๐ f โง WithBound f
theorem
LinearMap.withBound_iff_is_continuous
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{f : E โโ[๐] F}
:
WithBound โf โ Continuous โf
theorem
LinearMap.ker_coe_def
{R : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Semiring R]
[AddCommMonoid E]
[AddCommMonoid F]
[Module R E]
[Module R F]
{f : E โโ[R] F}
:
โ(LinearMap.ker f) = {x : E | f x = 0}
theorem
exists_dual_vector_of_ne
{๐ : Type u_2}
[RCLike ๐]
{X : Type u_1}
[NormedAddCommGroup X]
[NormedSpace ๐ X]
{x : X}
{y : X}
(h : x โ y)
:
โ (f : NormedSpace.Dual ๐ X), f x โ f y
theorem
isLinearMap_zero
(R : Type u_1)
{E : Type u_2}
{F : Type u_3}
[CommSemiring R]
[AddCommMonoid E]
[Module R E]
[AddCommMonoid F]
[Module R F]
:
IsLinearMap R 0
theorem
isContinuousLinearMapZero
{๐ : Type u_1}
{E : Type u_2}
[NormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
:
IsContinuousLinearMap ๐ 0
theorem
IsContinuousLinearMap.ofInnerSymmetricFun
{๐ : Type u_2}
[RCLike ๐]
{X : Type u_1}
[NormedAddCommGroup X]
[InnerProductSpace ๐ X]
[CompleteSpace X]
{f : X โ X}
(h : โ (a b : X), inner (f a) b = inner a (f b))
:
IsContinuousLinearMap ๐ f
structure
IsBilinearMap
(๐ : Type u_1)
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E ร F โ G)
:
Instances For
theorem
IsBilinearMap.add_left
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
(self : IsBilinearMap ๐ f)
(xโ : E)
(xโ : E)
(y : F)
:
theorem
IsBilinearMap.smul_left
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
(self : IsBilinearMap ๐ f)
(c : ๐)
(x : E)
(y : F)
:
theorem
IsBilinearMap.add_right
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
(self : IsBilinearMap ๐ f)
(x : E)
(yโ : F)
(yโ : F)
:
theorem
IsBilinearMap.smul_right
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
(self : IsBilinearMap ๐ f)
(c : ๐)
(x : E)
(y : F)
:
def
IsLeftLinearMap
(๐ : Type u_1)
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E ร F โ G)
:
Equations
- IsLeftLinearMap ๐ f = โ (b : F), IsLinearMap ๐ fun (a : E) => f (a, b)
Instances For
theorem
isLeftLinearMap_iff
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
:
IsLeftLinearMap ๐ f โ โ (b : F), IsLinearMap ๐ fun (a : E) => f (a, b)
def
IsRightLinearMap
(๐ : Type u_1)
[NormedField ๐]
{E : Type u_2}
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E ร F โ G)
:
Equations
- IsRightLinearMap ๐ f = โ (a : E), IsLinearMap ๐ fun (b : F) => f (a, b)
Instances For
theorem
isRightLinearMap_iff
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
:
IsRightLinearMap ๐ f โ โ (a : E), IsLinearMap ๐ fun (b : F) => f (a, b)
theorem
isBilinearMap_iff_is_linear_map_left_right
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
:
IsBilinearMap ๐ f โ IsLeftLinearMap ๐ f โง IsRightLinearMap ๐ f
def
IsBilinearMap.toLmLm
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
(hf : IsBilinearMap ๐ f)
:
Equations
- hf.toLmLm = { toFun := fun (x : E) => { toFun := fun (y : F) => f (x, y), map_add' := โฏ, map_smul' := โฏ }, map_add' := โฏ, map_smul' := โฏ }
Instances For
def
IsLmLeftIsClmRight.toLmClm
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
(hfโ : โ (y : F), IsLinearMap ๐ fun (a : E) => f (a, y))
(hfโ : โ (x : E), IsContinuousLinearMap ๐ fun (a : F) => f (x, a))
:
Equations
- IsLmLeftIsClmRight.toLmClm hfโ hfโ = { toFun := fun (x : E) => โฏ.mk', map_add' := โฏ, map_smul' := โฏ }
Instances For
theorem
IsBilinearMap.zero_left
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
(h : IsBilinearMap ๐ f)
(y : F)
:
f (0, y) = 0
theorem
IsBilinearMap.zero_right
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
(h : IsBilinearMap ๐ f)
(x : E)
:
f (x, 0) = 0
theorem
IsBilinearMap.eq_zero_add_self
{๐ : Type u_1}
[NormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E ร F โ G}
(h : IsBilinearMap ๐ f)
(xy : E ร F)
:
theorem
IsContinuousLinearMap.to_is_lm
{๐ : Type u_1}
{X : Type u_2}
{Y : Type u_3}
[NormedField ๐]
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ๐ X]
[NormedSpace ๐ Y]
{ฮฒ : X โ Y}
(hf : IsContinuousLinearMap ๐ ฮฒ)
:
IsLinearMap ๐ ฮฒ
theorem
Set.mem_extremePoints_iff'
{๐ : Type u_2}
[RCLike ๐]
{H : Type u_1}
[AddCommMonoid H]
[SMul ๐ H]
(x : H)
(y : Set H)
:
theorem
Metric.mem_extremePoints_of_closed_unitBall_iff
{๐ : Type u_1}
{H : Type u_2}
[RCLike ๐]
[NormedAddCommGroup H]
[NormedSpace ๐ H]
(x : H)
:
theorem
Metric.mem_extremePoints_of_unitBall_iff
{๐ : Type u_1}
{H : Type u_2}
[RCLike ๐]
[NormedAddCommGroup H]
[NormedSpace ๐ H]
(x : H)
:
theorem
Metric.exists_mem_closed_unitBall_of_norm_one
(๐ : Type u_1)
(H : Type u_2)
[RCLike ๐]
[NormedAddCommGroup H]
[NormedSpace ๐ H]
[Nontrivial H]
:
theorem
Metric.exists_mem_unitBall_of_norm_one
(๐ : Type u_1)
(H : Type u_2)
[RCLike ๐]
[NormedAddCommGroup H]
[NormedSpace ๐ H]
[Nontrivial H]
:
theorem
ne_zero_iff_nontrivial_of_mem_extremePoints_closed_unitBall
{๐ : Type u_1}
{H : Type u_2}
[RCLike ๐]
[NormedAddCommGroup H]
[NormedSpace ๐ H]
{x : H}
(hx : x โ Set.extremePoints ๐ (Metric.closedBall 0 1))
:
x โ 0 โ Nontrivial H
theorem
norm_one_of_mem_extremePoints_of_closed_unitBall
{๐ : Type u_1}
{H : Type u_2}
[RCLike ๐]
[NormedAddCommGroup H]
[NormedSpace ๐ H]
[Nontrivial H]
{x : H}
(hx : x โ Set.extremePoints ๐ (Metric.closedBall 0 1))
:
theorem
mem_extremePoints_of_closedBall_iff_norm_eq_one
{๐ : Type u_1}
{H : Type u_2}
[RCLike ๐]
[NormedAddCommGroup H]
[InnerProductSpace ๐ H]
[Nontrivial H]
(x : H)
:
x โ Set.extremePoints ๐ (Metric.closedBall 0 1) โ โxโ = 1
theorem
LinearIsometry.norm_comp_toContinuousLinearMap_le
{๐ : Type u_1}
{X : Type u_2}
{Y : Type u_3}
{Z : Type u_4}
[RCLike ๐]
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedAddCommGroup Z]
[NormedSpace ๐ X]
[NormedSpace ๐ Y]
[NormedSpace ๐ Z]
(f : X โโแตข[๐] Y)
(h : Y โL[๐] Z)
:
def
NormedSpace.Dual.transpose
{E : Type u_1}
{F : Type u_2}
(๐ : Type u_3)
[RCLike ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
:
NormedSpace.Dual ๐ F โโ[๐] NormedSpace.Dual ๐ E
Equations
- NormedSpace.Dual.transpose ๐ f = { toFun := fun (x : NormedSpace.Dual ๐ F) => ContinuousLinearMap.comp x f, map_add' := โฏ, map_smul' := โฏ }
Instances For
@[simp]
theorem
NormedSpace.Dual.transpose_apply
{E : Type u_1}
{F : Type u_2}
(๐ : Type u_3)
[RCLike ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(x : NormedSpace.Dual ๐ F)
:
(NormedSpace.Dual.transpose ๐ f) x = ContinuousLinearMap.comp x f
theorem
NormedSpace.Dual.transpose_isometry
{๐ : Type u_1}
{X : Type u_2}
{Y : Type u_3}
[RCLike ๐]
[NormedAddCommGroup X]
[NormedAddCommGroup Y]
[NormedSpace ๐ X]
[NormedSpace ๐ Y]
{f : X โโแตข[๐] Y}
:
Isometry โ(NormedSpace.Dual.transpose ๐ f.toLinearIsometry.toContinuousLinearMap)
def
LinearEquiv.transpose
{E : Type u_1}
{F : Type u_2}
(๐ : Type u_3)
[RCLike ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โโแตข[๐] F)
:
NormedSpace.Dual ๐ F โโแตข[๐] NormedSpace.Dual ๐ E
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LinearEquiv.transpose_toFun
{E : Type u_1}
{F : Type u_2}
(๐ : Type u_3)
[RCLike ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โโแตข[๐] F)
(a : NormedSpace.Dual ๐ F)
:
(LinearEquiv.transpose ๐ f) a = (NormedSpace.Dual.transpose ๐ f.toLinearIsometry.toContinuousLinearMap) a
@[simp]
theorem
LinearEquiv.transpose_symm_apply
{E : Type u_1}
{F : Type u_2}
(๐ : Type u_3)
[RCLike ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โโแตข[๐] F)
(a : NormedSpace.Dual ๐ E)
:
(LinearEquiv.transpose ๐ f).symm a = (NormedSpace.Dual.transpose ๐ f.symm.toLinearIsometry.toContinuousLinearMap) a
@[simp]
theorem
LinearEquiv.transpose_invFun
{E : Type u_1}
{F : Type u_2}
(๐ : Type u_3)
[RCLike ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โโแตข[๐] F)
(a : NormedSpace.Dual ๐ E)
:
(LinearEquiv.transpose ๐ f).invFun a = (NormedSpace.Dual.transpose ๐ f.symm.toLinearIsometry.toContinuousLinearMap) a
@[simp]
theorem
LinearEquiv.transpose_apply
{E : Type u_1}
{F : Type u_2}
(๐ : Type u_3)
[RCLike ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โโแตข[๐] F)
(a : NormedSpace.Dual ๐ F)
:
(LinearEquiv.transpose ๐ f) a = (NormedSpace.Dual.transpose ๐ f.toLinearIsometry.toContinuousLinearMap) a
theorem
example_pos_commute_iff_pos_mul_of
{๐ : Type u_1}
{R : Type u_2}
[RCLike ๐]
[Ring R]
[PartialOrder R]
[StarRing R]
[StarOrderedRing R]
[Algebra ๐ R]
(hโ : โ (x : R), 0 โค x โ โ (r : R), x = star r * r)
(hโ : โ (x : R), 0 โค x โ IsSelfAdjoint x โง spectrum ๐ x โ {a : ๐ | 0 โค a})
{x : R}
{y : R}
(hx : 0 โค x)
(hy : 0 โค y)
: