noncomputable instance
instStarAlgebraPiQComplex
{n : Type u_1}
[Fintype n]
:
starAlgebra (PiQ fun (x : n) => ℂ)
Equations
- instStarAlgebraPiQComplex = piStarAlgebra
noncomputable instance
instQuantumSetPiQComplex
{n : Type u_1}
[Fintype n]
:
QuantumSet (PiQ fun (x : n) => ℂ)
Equations
- instQuantumSetPiQComplex = Pi.quantumSet
theorem
SimpleGraph.toQuantumGraph
{V : Type u_1}
[Fintype V]
[DecidableEq V]
(G : SimpleGraph V)
:
QuantumGraph (EuclideanSpace ℂ V) (Matrix.toEuclideanLin (SimpleGraph.adjMatrix ℂ G))
a finite simple graph is a quantum graph
theorem
quantumGraph_numOfEdges_of_classical
{V : Type u_1}
[Fintype V]
[DecidableEq V]
(G : SimpleGraph V)
:
QuantumGraph.NumOfEdges (Matrix.toEuclideanLin (SimpleGraph.adjMatrix ℂ G)) = ∑ i : V, ∑ j : V, SimpleGraph.adjMatrix ℂ G i j
theorem
SimpleGraph.conjTranspose_adjMatrix
{V : Type u_1}
{α : Type u_2}
(G : SimpleGraph V)
[DecidableRel G.Adj]
[NonAssocSemiring α]
[StarRing α]
:
(SimpleGraph.adjMatrix α G).conjTranspose = SimpleGraph.adjMatrix α G
theorem
SimpleGraph.adjMatrix_toEuclideanLin_isReal
{V : Type u_1}
[Fintype V]
[DecidableEq V]
(G : SimpleGraph V)
:
LinearMap.IsReal (Matrix.toEuclideanLin (SimpleGraph.adjMatrix ℂ G))
theorem
SimpleGraph.adjMatrix_toEuclideanLin_symmMap
{V : Type u_1}
[Fintype V]
[DecidableEq V]
(G : SimpleGraph V)
:
(symmMap ℂ (EuclideanSpace ℂ V) (EuclideanSpace ℂ V)) (Matrix.toEuclideanLin (SimpleGraph.adjMatrix ℂ G)) = Matrix.toEuclideanLin (SimpleGraph.adjMatrix ℂ G)
theorem
SimpleGraph.adjMatrix_irreflexive
{V : Type u_1}
[Fintype V]
[DecidableEq V]
(G : SimpleGraph V)
:
Matrix.toEuclideanLin (SimpleGraph.adjMatrix ℂ G) •ₛ 1 = 0