Documentation

Monlib.QuantumGraph.OfClassicalGraph

noncomputable instance instStarAlgebraPiQComplex {n : Type u_1} [Fintype n] :
starAlgebra (PiQ fun (x : n) => )
Equations
  • instStarAlgebraPiQComplex = piStarAlgebra
noncomputable instance instQuantumSetPiQComplex {n : Type u_1} [Fintype n] :
QuantumSet (PiQ fun (x : n) => )
Equations
  • instQuantumSetPiQComplex = Pi.quantumSet
theorem EuclideanSpace.comul_eq {n : Type u_1} [Fintype n] [DecidableEq n] (x : PiQ fun (x : n) => ) :
let e := fun (i j : n) => if i = j then 1 else 0; Coalgebra.comul x = i : n, x i e i ⊗ₜ[] e i
theorem SimpleGraph.toQuantumGraph {V : Type u_1} [Fintype V] [DecidableEq V] (G : SimpleGraph V) :
QuantumGraph (EuclideanSpace V) (Matrix.toEuclideanLin (SimpleGraph.adjMatrix G))

a finite simple graph is a quantum graph

theorem quantumGraph_numOfEdges_of_classical {V : Type u_1} [Fintype V] [DecidableEq V] (G : SimpleGraph V) :
QuantumGraph.NumOfEdges (Matrix.toEuclideanLin (SimpleGraph.adjMatrix G)) = i : V, j : V, SimpleGraph.adjMatrix G i j
theorem SimpleGraph.adjMatrix_irreflexive {V : Type u_1} [Fintype V] [DecidableEq V] (G : SimpleGraph V) :
Matrix.toEuclideanLin (SimpleGraph.adjMatrix G) •ₛ 1 = 0