Documentation

Monlib.QuantumGraph.Matrix

theorem lmul_toMatrix {n : Type u_1} [Fintype n] [DecidableEq n] {φ : Module.Dual (Matrix n n )} [ : φ.IsFaithfulPosMap] (x : Matrix n n ) :
onb.toMatrix (lmul x) = Matrix.kroneckerMap (fun (x1 x2 : ) => x1 * x2) x 1
theorem rmul_toMatrix {n : Type u_1} [Fintype n] [DecidableEq n] {φ : Module.Dual (Matrix n n )} [ : φ.IsFaithfulPosMap] (x : Matrix n n ) :
onb.toMatrix (rmul x) = Matrix.kroneckerMap (fun (x1 x2 : ) => x1 * x2) 1 ((modAut (1 / 2)) x).transpose
theorem Matrix.stdBasisMatrix_transpose {R : Type u_2} {n : Type u_3} {p : Type u_4} [DecidableEq n] [DecidableEq p] [Zero R] {i : n} {j : p} {α : R} :
theorem Module.Dual.IsFaithfulPosMap.inner_coord' {n : Type u_1} [Fintype n] [DecidableEq n] {φ : Dual (Matrix n n )} [ : φ.IsFaithfulPosMap] (y : Matrix n n ) (i j : n) :
inner (onb (i, j)) y = (y * .rpow (1 / 2)) i j
noncomputable def QuantumGraph.Real.matrix_submodule {n : Type u_1} [Fintype n] [DecidableEq n] {φ : Module.Dual (Matrix n n )} [ : φ.IsFaithfulPosMap] {A : Matrix n n →ₗ[] Matrix n n } (hA : Real (Matrix n n ) A) :
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem StarAlgEquiv.lTensor_symm {R : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} [RCLike R] [Ring A] [Ring B] [Ring C] [Algebra R A] [Algebra R B] [Algebra R C] [StarAddMonoid A] [StarAddMonoid B] [StarAddMonoid C] [StarModule R A] [StarModule R B] [StarModule R C] [Module.Finite R A] [Module.Finite R B] [Module.Finite R C] (f : A ≃⋆ₐ[R] B) :
    theorem QuantumGraph.Real.matrix_eq_of_orthonormalBasis {n : Type u_1} [Fintype n] [DecidableEq n] {φ : Module.Dual (Matrix n n )} [ : φ.IsFaithfulPosMap] {A : Matrix n n →ₗ[] Matrix n n } (hA : Real (Matrix n n ) A) {ι : Type u_2} [DecidableEq ι] [Fintype ι] (u : OrthonormalBasis ι hA.matrix_submodule) :
    A = i : ι, lmul ((u i) * φ.matrix) * LinearMap.adjoint (rmul (φ.matrix * (u i)))
    @[reducible, inline]
    noncomputable abbrev QuantumGraph.Real.of_norm_one_matrix {n : Type u_1} [Fintype n] [DecidableEq n] {φ : Module.Dual (Matrix n n )} [ : φ.IsFaithfulPosMap] (u : { x : Matrix n n // x = 1 }) :
    Equations
    Instances For
      theorem OrthonormalBasis.norm_eq_one {ι : Type u_2} {𝕜 : Type u_3} {E : Type u_4} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [DecidableEq ι] (u : OrthonormalBasis ι 𝕜 E) (i : ι) :
      u i = 1
      theorem orthogonalProjection'_of_finrank_eq_one {𝕜 : Type u_2} {E : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {U : Submodule 𝕜 E} (hU : Module.finrank 𝕜 U = 1) :
      ∃ (v : { x : E // x = 1 }), orthogonalProjection' U = ((rankOne 𝕜) v) v
      noncomputable def normalize_of_ne_zero {E : Type u_2} [NormedAddCommGroup E] [InnerProductSpace E] {a : E} (ha : a 0) :
      { x : E // x = 1 }
      Equations
      Instances For
        theorem counit_eq_traceLinearMap_of_counit_eq_piMat_traceLinearMap {ι : Type u_2} [DecidableEq ι] [Fintype ι] {p : ιType u_3} [(i : ι) → Fintype (p i)] [(i : ι) → DecidableEq (p i)] {φ : (i : ι) → Module.Dual (Matrix (p i) (p i) )} [ : ∀ (i : ι), (φ i).IsFaithfulPosMap] (hc : CoalgebraStruct.counit = PiMat.traceLinearMap) (i : ι) :
        class QuantumGraph.equiv {A : Type u_2} {B : Type u_3} [starAlgebra A] [QuantumSet A] [starAlgebra B] [QuantumSet B] (x : A →ₗ[] A) (y : B →ₗ[] B) (f : A ≃⋆ₐ[] B) :
        Instances
          theorem QuantumGraph.equiv_prop {A : Type u_2} {B : Type u_3} [starAlgebra A] [QuantumSet A] [starAlgebra B] [QuantumSet B] (x : A →ₗ[] A) (y : B →ₗ[] B) {f : A ≃⋆ₐ[] B} (hf : equiv x y f) :
          theorem Pi.eq_sum_single_proj (R : Type u_2) {ι : Type u_3} [Semiring R] [Fintype ι] [DecidableEq ι] {φ : ιType u_4} [(i : ι) → AddCommMonoid (φ i)] [(i : ι) → Module R (φ i)] (x : (i : ι) → φ i) :
          x = i : ι, single i (x i)