Ordered cancellative monoids #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
- add : α → α → α
- add_assoc : ∀ (a b c : α), a + b + c = a + (b + c)
- zero : α
- zero_add : ∀ (a : α), 0 + a = a
- add_zero : ∀ (a : α), a + 0 = a
- nsmul : ℕ → α → α
- nsmul_zero' : (∀ (x : α), ordered_cancel_add_comm_monoid.nsmul 0 x = 0) . "try_refl_tac"
- nsmul_succ' : (∀ (n : ℕ) (x : α), ordered_cancel_add_comm_monoid.nsmul n.succ x = x + ordered_cancel_add_comm_monoid.nsmul n x) . "try_refl_tac"
- add_comm : ∀ (a b : α), a + b = b + a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- add_le_add_left : ∀ (a b : α), a ≤ b → ∀ (c : α), c + a ≤ c + b
- le_of_add_le_add_left : ∀ (a b c : α), a + b ≤ a + c → b ≤ c
An ordered cancellative additive commutative monoid is an additive commutative monoid with a partial order, in which addition is cancellative and monotone.
Instances of this typeclass
- add_submonoid_class.to_ordered_cancel_add_comm_monoid
- linear_ordered_cancel_add_comm_monoid.to_ordered_cancel_add_comm_monoid
- ordered_add_comm_group.to_ordered_cancel_add_comm_monoid
- strict_ordered_semiring.to_ordered_cancel_add_comm_monoid
- order_dual.ordered_cancel_add_comm_monoid
- additive.ordered_cancel_add_comm_monoid
- rat.ordered_cancel_add_comm_monoid
- multiset.ordered_cancel_add_comm_monoid
- add_submonoid.to_ordered_cancel_add_comm_monoid
- submodule.to_ordered_cancel_add_comm_monoid
- prod.ordered_cancel_add_comm_monoid
- finsupp.ordered_cancel_add_comm_monoid
- pi.ordered_cancel_add_comm_monoid
- nonneg.ordered_cancel_add_comm_monoid
- real.ordered_cancel_add_comm_monoid
- seminorm.ordered_cancel_add_comm_monoid
- add_localization.ordered_cancel_add_comm_monoid
Instances of other typeclasses for ordered_cancel_add_comm_monoid
- ordered_cancel_add_comm_monoid.has_sizeof_inst
- mul : α → α → α
- mul_assoc : ∀ (a b c : α), a * b * c = a * (b * c)
- one : α
- one_mul : ∀ (a : α), 1 * a = a
- mul_one : ∀ (a : α), a * 1 = a
- npow : ℕ → α → α
- npow_zero' : (∀ (x : α), ordered_cancel_comm_monoid.npow 0 x = 1) . "try_refl_tac"
- npow_succ' : (∀ (n : ℕ) (x : α), ordered_cancel_comm_monoid.npow n.succ x = x * ordered_cancel_comm_monoid.npow n x) . "try_refl_tac"
- mul_comm : ∀ (a b : α), a * b = b * a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- mul_le_mul_left : ∀ (a b : α), a ≤ b → ∀ (c : α), c * a ≤ c * b
- le_of_mul_le_mul_left : ∀ (a b c : α), a * b ≤ a * c → b ≤ c
An ordered cancellative commutative monoid is a commutative monoid with a partial order, in which multiplication is cancellative and monotone.
Instances of this typeclass
- submonoid_class.to_ordered_cancel_comm_monoid
- linear_ordered_cancel_comm_monoid.to_ordered_cancel_comm_monoid
- ordered_comm_group.to_ordered_cancel_comm_monoid
- order_dual.ordered_cancel_comm_monoid
- multiplicative.ordered_cancel_comm_monoid
- submonoid.to_ordered_cancel_comm_monoid
- prod.ordered_cancel_comm_monoid
- pi.ordered_cancel_comm_monoid
- localization.ordered_cancel_comm_monoid
Instances of other typeclasses for ordered_cancel_comm_monoid
- ordered_cancel_comm_monoid.has_sizeof_inst
Equations
- ordered_cancel_add_comm_monoid.to_ordered_add_comm_monoid = {add := ordered_cancel_add_comm_monoid.add _inst_1, add_assoc := _, zero := ordered_cancel_add_comm_monoid.zero _inst_1, zero_add := _, add_zero := _, nsmul := ordered_cancel_add_comm_monoid.nsmul _inst_1, nsmul_zero' := _, nsmul_succ' := _, add_comm := _, le := ordered_cancel_add_comm_monoid.le _inst_1, lt := ordered_cancel_add_comm_monoid.lt _inst_1, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _}
Equations
- ordered_cancel_comm_monoid.to_ordered_comm_monoid = {mul := ordered_cancel_comm_monoid.mul _inst_1, mul_assoc := _, one := ordered_cancel_comm_monoid.one _inst_1, one_mul := _, mul_one := _, npow := ordered_cancel_comm_monoid.npow _inst_1, npow_zero' := _, npow_succ' := _, mul_comm := _, le := ordered_cancel_comm_monoid.le _inst_1, lt := ordered_cancel_comm_monoid.lt _inst_1, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _}
Equations
- ordered_cancel_comm_monoid.to_cancel_comm_monoid = {mul := ordered_cancel_comm_monoid.mul _inst_1, mul_assoc := _, mul_left_cancel := _, one := ordered_cancel_comm_monoid.one _inst_1, one_mul := _, mul_one := _, npow := ordered_cancel_comm_monoid.npow _inst_1, npow_zero' := _, npow_succ' := _, mul_comm := _}
Equations
- ordered_cancel_add_comm_monoid.to_cancel_add_comm_monoid = {add := ordered_cancel_add_comm_monoid.add _inst_1, add_assoc := _, add_left_cancel := _, zero := ordered_cancel_add_comm_monoid.zero _inst_1, zero_add := _, add_zero := _, nsmul := ordered_cancel_add_comm_monoid.nsmul _inst_1, nsmul_zero' := _, nsmul_succ' := _, add_comm := _}
- add : α → α → α
- add_assoc : ∀ (a b c : α), a + b + c = a + (b + c)
- zero : α
- zero_add : ∀ (a : α), 0 + a = a
- add_zero : ∀ (a : α), a + 0 = a
- nsmul : ℕ → α → α
- nsmul_zero' : (∀ (x : α), linear_ordered_cancel_add_comm_monoid.nsmul 0 x = 0) . "try_refl_tac"
- nsmul_succ' : (∀ (n : ℕ) (x : α), linear_ordered_cancel_add_comm_monoid.nsmul n.succ x = x + linear_ordered_cancel_add_comm_monoid.nsmul n x) . "try_refl_tac"
- add_comm : ∀ (a b : α), a + b = b + a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- add_le_add_left : ∀ (a b : α), a ≤ b → ∀ (c : α), c + a ≤ c + b
- le_of_add_le_add_left : ∀ (a b c : α), a + b ≤ a + c → b ≤ c
- le_total : ∀ (a b : α), a ≤ b ∨ b ≤ a
- decidable_le : decidable_rel has_le.le
- decidable_eq : decidable_eq α
- decidable_lt : decidable_rel has_lt.lt
- max : α → α → α
- max_def : linear_ordered_cancel_add_comm_monoid.max = max_default . "reflexivity"
- min : α → α → α
- min_def : linear_ordered_cancel_add_comm_monoid.min = min_default . "reflexivity"
A linearly ordered cancellative additive commutative monoid is an additive commutative monoid with a decidable linear order in which addition is cancellative and monotone.
Instances of this typeclass
- add_submonoid_class.to_linear_ordered_cancel_add_comm_monoid
- linear_ordered_add_comm_group.to_linear_ordered_cancel_add_comm_monoid
- linear_ordered_comm_semiring.to_linear_ordered_cancel_add_comm_monoid
- nat.linear_ordered_cancel_add_comm_monoid
- order_dual.linear_ordered_cancel_add_comm_monoid
- punit.linear_ordered_cancel_add_comm_monoid
- add_submonoid.to_linear_ordered_cancel_add_comm_monoid
- submodule.to_linear_ordered_cancel_add_comm_monoid
- nonneg.linear_ordered_cancel_add_comm_monoid
- add_localization.linear_ordered_cancel_add_comm_monoid
Instances of other typeclasses for linear_ordered_cancel_add_comm_monoid
- linear_ordered_cancel_add_comm_monoid.has_sizeof_inst
- mul : α → α → α
- mul_assoc : ∀ (a b c : α), a * b * c = a * (b * c)
- one : α
- one_mul : ∀ (a : α), 1 * a = a
- mul_one : ∀ (a : α), a * 1 = a
- npow : ℕ → α → α
- npow_zero' : (∀ (x : α), linear_ordered_cancel_comm_monoid.npow 0 x = 1) . "try_refl_tac"
- npow_succ' : (∀ (n : ℕ) (x : α), linear_ordered_cancel_comm_monoid.npow n.succ x = x * linear_ordered_cancel_comm_monoid.npow n x) . "try_refl_tac"
- mul_comm : ∀ (a b : α), a * b = b * a
- le : α → α → Prop
- lt : α → α → Prop
- le_refl : ∀ (a : α), a ≤ a
- le_trans : ∀ (a b c : α), a ≤ b → b ≤ c → a ≤ c
- lt_iff_le_not_le : (∀ (a b : α), a < b ↔ a ≤ b ∧ ¬b ≤ a) . "order_laws_tac"
- le_antisymm : ∀ (a b : α), a ≤ b → b ≤ a → a = b
- mul_le_mul_left : ∀ (a b : α), a ≤ b → ∀ (c : α), c * a ≤ c * b
- le_of_mul_le_mul_left : ∀ (a b c : α), a * b ≤ a * c → b ≤ c
- le_total : ∀ (a b : α), a ≤ b ∨ b ≤ a
- decidable_le : decidable_rel has_le.le
- decidable_eq : decidable_eq α
- decidable_lt : decidable_rel has_lt.lt
- max : α → α → α
- max_def : linear_ordered_cancel_comm_monoid.max = max_default . "reflexivity"
- min : α → α → α
- min_def : linear_ordered_cancel_comm_monoid.min = min_default . "reflexivity"
A linearly ordered cancellative commutative monoid is a commutative monoid with a linear order in which multiplication is cancellative and monotone.
Instances of this typeclass
- submonoid_class.to_linear_ordered_cancel_comm_monoid
- linear_ordered_comm_group.to_linear_ordered_cancel_comm_monoid
- order_dual.linear_ordered_cancel_comm_monoid
- submonoid.to_linear_ordered_cancel_comm_monoid
- positive.subtype.linear_ordered_cancel_comm_monoid
- pnat.linear_ordered_cancel_comm_monoid
- localization.linear_ordered_cancel_comm_monoid
Instances of other typeclasses for linear_ordered_cancel_comm_monoid
- linear_ordered_cancel_comm_monoid.has_sizeof_inst