Quotients of polynomial rings #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
For a commutative ring $R$, evaluating a polynomial at an element $x \in R$ induces an isomorphism of $R$-algebras $R[X] / \langle X - x \rangle \cong R$.
For a commutative ring $R$, evaluating a polynomial at an element $y \in R$ induces an isomorphism of $R$-algebras $R[X] / \langle x, X - y \rangle \cong R / \langle x \rangle$.
Equations
- polynomial.quotient_span_C_X_sub_C_alg_equiv x y = (ideal.quotient_equiv_alg_of_eq R _).trans ((double_quot.quot_quot_equiv_quot_supₐ R (ideal.span {polynomial.X - ⇑polynomial.C y}) (ideal.span {⇑polynomial.C x})).symm.trans (((ideal.map (ideal.quotient.mkₐ R (ideal.span {polynomial.X - ⇑polynomial.C y})) (ideal.span {⇑polynomial.C x})).quotient_equiv_alg (ideal.map ↑(polynomial.quotient_span_X_sub_C_alg_equiv y) (ideal.map (ideal.quotient.mkₐ R (ideal.span {polynomial.X - ⇑polynomial.C y})) (ideal.span {⇑polynomial.C x}))) (polynomial.quotient_span_X_sub_C_alg_equiv y) _).trans (ideal.quotient_equiv_alg_of_eq R _)))
If I is an ideal of R, then the ring polynomials over the quotient ring I.quotient is
isomorphic to the quotient of R[X] by the ideal map C I,
where map C I contains exactly the polynomials whose coefficients all lie in I
Equations
- I.polynomial_quotient_equiv_quotient_polynomial = {to_fun := ⇑(polynomial.eval₂_ring_hom (ideal.quotient.lift I ((ideal.quotient.mk (ideal.map polynomial.C I)).comp polynomial.C) ideal.quotient_map_C_eq_zero) (⇑(ideal.quotient.mk (ideal.map polynomial.C I)) polynomial.X)), inv_fun := ⇑(ideal.quotient.lift (ideal.map polynomial.C I) (polynomial.eval₂_ring_hom (polynomial.C.comp (ideal.quotient.mk I)) polynomial.X) ideal.eval₂_C_mk_eq_zero), left_inv := _, right_inv := _, map_mul' := _, map_add' := _}
If P is a prime ideal of R, then R[x]/(P) is an integral domain.
Given any ring R and an ideal I of R[X], we get a map R → R[x] → R[x]/I.
If we let R be the image of R in R[x]/I then we also have a map R[x] → R'[x].
In particular we can map I across this map, to get I' and a new map R' → R'[x] → R'[x]/I.
This theorem shows I' will not contain any non-zero constant polynomials
If I is an ideal of R, then the ring mv_polynomial σ I.quotient is isomorphic as an
R-algebra to the quotient of mv_polynomial σ R by the ideal generated by I.
Equations
- mv_polynomial.quotient_equiv_quotient_mv_polynomial I = {to_fun := ⇑(mv_polynomial.eval₂_hom (ideal.quotient.lift I ((ideal.quotient.mk (ideal.map mv_polynomial.C I)).comp mv_polynomial.C) _) (λ (i : σ), ⇑(ideal.quotient.mk (ideal.map mv_polynomial.C I)) (mv_polynomial.X i))), inv_fun := ⇑(ideal.quotient.lift (ideal.map mv_polynomial.C I) (mv_polynomial.eval₂_hom (mv_polynomial.C.comp (ideal.quotient.mk I)) mv_polynomial.X) _), left_inv := _, right_inv := _, map_mul' := _, map_add' := _, commutes' := _}