mathlib3 documentation

monlib / linear_algebra.my_matrix.is_almost_hermitian

Almost Hermitian Matrices #

This file contains the definition and some basic results about almost Hermitian matrices.

We say a matrix x is is_almost_hermitian if there exists some scalar α ∈ ℂ.

def matrix.is_almost_hermitian {𝕜 : Type u_1} {n : Type u_2} [has_star 𝕜] [has_smul 𝕜 (matrix n n 𝕜)] (x : matrix n n 𝕜) :
Prop

a matrix $x \in M_n(\mathbb{k})$ is ``almost Hermitian'' if there exists some $\alpha\in\mathbb{k}$ and $y\in M_n(\mathbb{k})$ such that $\alpha y = x$ and $y$ is Hermitian

Equations

$x\in M_n(\mathbb{C})$ is almost Hermitian if and only if $x \otimes_k \bar{x}$ is Hermitian

theorem matrix.is_almost_hermitian_zero {𝕜 : Type u_1} {n : Type u_2} [semiring 𝕜] [star_ring 𝕜] :

0 is almost Hermitian

theorem matrix.almost_hermitian.is_star_normal {𝕜 : Type u_1} {n : Type u_2} [fintype n] [comm_semiring 𝕜] [star_ring 𝕜] {M : matrix n n 𝕜} (hM : M.is_almost_hermitian) :

if $x$ is almost Hermitian, then it is also normal

theorem matrix.almost_hermitian_iff_smul {𝕜 : Type u_1} {n : Type u_2} [comm_semiring 𝕜] [star_ring 𝕜] {M : matrix n n 𝕜} :

$x$ is almost Hermitian if and only if $\beta \cdot x$ is almost Hermitian for any $\beta$

def matrix.is_diagonal {R : Type u_1} {n : Type u_2} [has_zero R] (A : matrix n n R) :
Prop
Equations
theorem matrix.is_diagonal_eq {n : Type u_2} {R : Type u_1} [has_zero R] [decidable_eq n] (A : matrix n n R) :

an almost Hermitian matrix is upper-triangular if and only if it is diagonal

theorem matrix.is_hermitian.is_almost_hermitian {𝕜 : Type u_1} {n : Type u_2} [semiring 𝕜] [has_star 𝕜] {x : matrix n n 𝕜} (hx : x.is_hermitian) :