mathlib3 documentation

monlib / linear_algebra.my_ips.ips

Finite-dimensional inner product spaces #

In this file, we prove some results in finite-dimensional inner product spaces.

Notation #

This file uses the local notation P _ for orthogonal_projection _ and โ†ฅP _ for the extended orthogonal projection orthogonal_projection' _.

We let $V$ be an inner product space over $\mathbb{k}$.

$U$ is $T$-invariant if and only if $U^\bot$ is $T^*$ invariant

theorem is_self_adjoint.submodule_invariant_iff_ortho_submodule_invariant {V : Type u_1} {๐•œ : Type u_2} [is_R_or_C ๐•œ] [normed_add_comm_group V] [inner_product_space ๐•œ V] [finite_dimensional ๐•œ V] (U : submodule ๐•œ V) (T : V โ†’โ‚—[๐•œ] V) (h : is_self_adjoint T) :

$T$ is self adjoint implies $U$ is $T$-invariant if and only if $U^\bot$ is $T$-invariant

theorem ker_is_ortho_adjoint_range {V : Type u_1} {๐•œ : Type u_2} [is_R_or_C ๐•œ] [normed_add_comm_group V] [inner_product_space ๐•œ V] {W : Type u_3} [finite_dimensional ๐•œ V] [normed_add_comm_group W] [inner_product_space ๐•œ W] [finite_dimensional ๐•œ W] (T : V โ†’โ‚—[๐•œ] W) :

$\textnormal{ker}(T) = \textnormal{range}(T^*)^\bot$

given any idempotent operator $T \in L(V)$, then is_compl T.ker T.range, in other words, there exists unique $v \in \textnormal{ker}(T)$ and $w \in \textnormal{range}(T)$ such that $x = v + w$

idempotent $T$ is self-adjoint if and only if $\textnormal{ker}(T)^\bot=\textnormal{range}(T)$

theorem linear_map.is_star_normal_iff_adjoint {V : Type u_1} {๐•œ : Type u_2} [is_R_or_C ๐•œ] [normed_add_comm_group V] [inner_product_space ๐•œ V] [finite_dimensional ๐•œ V] (T : V โ†’โ‚—[๐•œ] V) :

linear map is_star_normal if and only if it commutes with its adjoint

theorem is_symmetric_mul_adjoint_self {V : Type u_1} {๐•œ : Type u_2} [is_R_or_C ๐•œ] [normed_add_comm_group V] [inner_product_space ๐•œ V] [finite_dimensional ๐•œ V] (T : V โ†’โ‚—[๐•œ] V) :
theorem is_symmetric.neg {V : Type u_1} {๐•œ : Type u_2} [is_R_or_C ๐•œ] [normed_add_comm_group V] [inner_product_space ๐•œ V] (T : V โ†’โ‚—[๐•œ] V) (hT : T.is_symmetric) :
theorem is_symmetric.sub {V : Type u_1} {๐•œ : Type u_2} [is_R_or_C ๐•œ] [normed_add_comm_group V] [inner_product_space ๐•œ V] {T S : V โ†’โ‚—[๐•œ] V} (hT : T.is_symmetric) (hS : S.is_symmetric) :

$T$ is normal if and only if $\forall v, \|T v\| = \|T^* v\|$

if $T$ is normal, then $\forall x \in V, x \in \textnormal{eigenspace}(T ,\mu) \iff x \in \textnormal{eigenspace}(T^* ,\bar{\mu})$

$T$ is injective if and only if $T^*$ is surjective