mathlib3 documentation

monlib / linear_algebra.my_ips.op_unop

The multiplicative opposite linear equivalence #

This file defines the multiplicative opposite linear equivalence as linear maps op and unop. This is essentially mul_opposite.op_linear_equiv R : A ≃ₗ[R] Aᵐᵒᵖ but defined as linear maps rather than linear_equiv.

We also define ten_swap which is the linear automorphisms on A ⊗[R] Aᵐᵒᵖ given by swapping the tensor factors while keeping the ᵒᵖ in place, i.e., ten_swap (x ⊗ₜ op y) = y ⊗ₜ op x.

def op {R : Type u_1} {A : Type u_2} [comm_semiring R] [add_comm_monoid A] [module R A] :
Equations
theorem op_apply {R : Type u_1} {A : Type u_2} [comm_semiring R] [add_comm_monoid A] [module R A] (x : A) :
def unop {R : Type u_1} {A : Type u_2} [comm_semiring R] [add_comm_monoid A] [module R A] :
Equations
theorem unop_apply {R : Type u_1} {A : Type u_2} [comm_semiring R] [add_comm_monoid A] [module R A] (x : Aᵐᵒᵖ) :
theorem unop_op {R : Type u_1} {A : Type u_2} [comm_semiring R] [add_comm_monoid A] [module R A] (x : A) :
theorem op_unop {R : Type u_1} {A : Type u_2} [comm_semiring R] [add_comm_monoid A] [module R A] (x : Aᵐᵒᵖ) :
theorem unop_comp_op {R : Type u_1} {A : Type u_2} [comm_semiring R] [add_comm_monoid A] [module R A] :
theorem op_comp_unop {R : Type u_1} {A : Type u_2} [comm_semiring R] [add_comm_monoid A] [module R A] :
theorem op_star_apply {R : Type u_1} {A : Type u_2} [comm_semiring R] [add_comm_monoid A] [module R A] [has_star A] (a : A) :
theorem ten_swap_apply' {R : Type u_1} {A : Type u_2} [comm_semiring R] [add_comm_monoid A] [module R A] (x y : A) :
theorem ten_swap_ten_swap {R : Type u_1} {A : Type u_2} [comm_semiring R] [add_comm_monoid A] [module R A] :