Some stuff on almost-Hermitian matrices #
This file contains a blackbox theorem that says that two almost-Hermitian matrices have the same spectrum if and only if they are almost similar. This is a generalization of the fact that two Hermitian matrices have the same spectrum if and only if they are unitarily similar.
theorem
matrix.is_almost_hermitian.spectra_ext
{n : Type u_1}
{𝕜 : Type u_2}
[is_R_or_C 𝕜]
[fintype n]
[decidable_eq n]
[decidable_eq 𝕜]
{A B : n → 𝕜}
(hA : (matrix.diagonal A).is_almost_hermitian)
(hB : (matrix.diagonal B).is_almost_hermitian) :
Note: this declaration is incomplete and uses sorry
.
theorem
matrix.is_diagonal.spectrum_eq_iff_rotation
{n : Type u_1}
{𝕜 : Type u_2}
[is_R_or_C 𝕜]
[fintype n]
[decidable_eq n]
[decidable_eq 𝕜]
(A₁ A₂ : n → 𝕜)
(hA₁ : (matrix.diagonal A₁).is_almost_hermitian)
(hA₂ : (matrix.diagonal A₂).is_almost_hermitian) :
hA₁.spectra = hA₂.spectra ↔ ∃ (U : equiv.perm n), matrix.diagonal A₂ = ⇑(matrix.inner_aut ⟨(equiv.to_pequiv U).to_matrix, _⟩⁻¹) (matrix.diagonal A₁)
theorem
matrix.is_almost_hermitian.spectra_of_inner_aut
{n : Type u_1}
{𝕜 : Type u_2}
[is_R_or_C 𝕜]
[fintype n]
[decidable_eq n]
[decidable_eq 𝕜]
{A : matrix n n 𝕜}
(hA : A.is_almost_hermitian)
(U : ↥(matrix.unitary_group n 𝕜)) :
Note: this declaration is incomplete and uses sorry
.
theorem
matrix.is_almost_hermitian.inner_aut_spectra
{n : Type u_1}
{𝕜 : Type u_2}
[is_R_or_C 𝕜]
[fintype n]
[decidable_eq n]
[decidable_eq 𝕜]
{A : matrix n n 𝕜}
(U : ↥(matrix.unitary_group n 𝕜))
(hA : (⇑(matrix.inner_aut U) A).is_almost_hermitian) :
theorem
matrix.is_almost_hermitian.spectrum_eq_iff
{n : Type u_1}
{𝕜 : Type u_2}
[is_R_or_C 𝕜]
[fintype n]
[decidable_eq n]
[decidable_eq 𝕜]
{A₁ A₂ : matrix n n 𝕜}
(hA₁ : A₁.is_almost_hermitian)
(hA₂ : A₂.is_almost_hermitian) :
def
matrix.is_almost_similar_to
{n : Type u_1}
{𝕜 : Type u_2}
[is_R_or_C 𝕜]
[fintype n]
[decidable_eq n]
[fintype n]
[decidable_eq n]
[is_R_or_C 𝕜]
(x y : matrix n n 𝕜) :
Prop
two matrices are almost similar if there exists some $0\neq\beta\in\mathbb{C}$ such that $x$ and $\beta y$ are similar
Equations
- x.is_almost_similar_to y = ∃ (β : 𝕜ˣ) (U : ↥(matrix.unitary_group n 𝕜)), ↑β • y = ⇑(matrix.inner_aut U⁻¹) x
theorem
matrix.is_almost_hermitian.has_almost_equal_spectra_to_iff_is_almost_similar_to
{n : Type u_1}
[fintype n]
[decidable_eq n]
[linear_order n]
{x y : matrix n n ℂ}
(hx : x.is_almost_hermitian)
(hy : y.is_almost_hermitian) :
hx.has_almost_equal_spectra_to hy ↔ x.is_almost_similar_to y
an immediate corollary to matrix.is_almost_hermitian.spectrum_eq_iff
using
matrix.is_almost_similar_to
and matrix.has_almost_equal_spectra_to