mathlib3 documentation

monlib / linear_algebra.blackbox

Some stuff on almost-Hermitian matrices #

This file contains a blackbox theorem that says that two almost-Hermitian matrices have the same spectrum if and only if they are almost similar. This is a generalization of the fact that two Hermitian matrices have the same spectrum if and only if they are unitarily similar.

theorem ite_eq_ite_iff {α : Type u_1} (a b c : α) :
( {p : Prop} [_inst_1 : decidable p], ite p a c = ite p b c) a = b
theorem ite_eq_ite_iff_of_pi {n : Type u_1} {α : Type u_2} [decidable_eq n] (a b c : n α) :
( (i j : n), ite (i = j) (a i) (c i) = ite (i = j) (b i) (c i)) a = b
theorem matrix.is_almost_hermitian.spectra_ext {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A B : n 𝕜} (hA : (matrix.diagonal A).is_almost_hermitian) (hB : (matrix.diagonal B).is_almost_hermitian) :
hA.spectra = hB.spectra (σ : equiv.perm n), (i : n), A i = B (σ i)

Note: this declaration is incomplete and uses sorry.

theorem matrix.is_almost_hermitian.spectra_of_inner_aut {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A : matrix n n 𝕜} (hA : A.is_almost_hermitian) (U : (matrix.unitary_group n 𝕜)) :

Note: this declaration is incomplete and uses sorry.

theorem matrix.is_almost_hermitian.inner_aut_spectra {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A : matrix n n 𝕜} (U : (matrix.unitary_group n 𝕜)) (hA : ((matrix.inner_aut U) A).is_almost_hermitian) :
theorem matrix.is_almost_hermitian.spectrum_eq_iff {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [decidable_eq 𝕜] {A₁ A₂ : matrix n n 𝕜} (hA₁ : A₁.is_almost_hermitian) (hA₂ : A₂.is_almost_hermitian) :
hA₁.spectra = hA₂.spectra (U : (matrix.unitary_group n 𝕜)), A₂ = (matrix.inner_aut U⁻¹) A₁
def matrix.is_almost_similar_to {n : Type u_1} {𝕜 : Type u_2} [is_R_or_C 𝕜] [fintype n] [decidable_eq n] [fintype n] [decidable_eq n] [is_R_or_C 𝕜] (x y : matrix n n 𝕜) :
Prop

two matrices are almost similar if there exists some $0\neq\beta\in\mathbb{C}$ such that $x$ and $\beta y$ are similar

Equations